
Video for Linux Two API Specification

Draft 0.12

Michael H Schimek
mschimek@gmx.at

Bill Dirks

Hans Verkuil

Video for Linux Two API Specification: Draft 0.12
by Michael H Schimek, Bill Dirks, and Hans Verkuil

Copyright © 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Bill Dirks, Michael H. Schimek, Hans Verkuil

This document is copyrighted © 1999-2006 by Bill Dirks, Michael H. Schimek and Hans Verkuil.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License".

Programming examples can be used and distributed without restrictions.

Revision History

Revision 0.12 2006-02-03 Revised by: mhs
Corrected the description of struct v4l2_captureparm and v4l2_outputparm.
Revision 0.11 2006-01-27 Revised by: mhs
Improved the description of struct v4l2_tuner.
Revision 0.10 2006-01-10 Revised by: mhs
VIDIOC_G_INPUT and VIDIOC_S_PARM clarifications.
Revision 0.9 2005-11-27 Revised by: mhs
Improved the 525 line numbering diagram. Hans Verkuil and I rewrote the sliced VBI section. He also contributed a VIDIOC_LOG_STATUS page. Fixed VIDIOC_S_STD call in the video standard selection example. Various updates.
Revision 0.8 2004-10-04 Revised by: mhs
Somehow a piece of junk slipped into the capture example, removed.
Revision 0.7 2004-09-19 Revised by: mhs
Fixed video standard selection, control enumeration, downscaling and aspect example. Added read and user pointer i/o to video capture example.
Revision 0.6 2004-08-01 Revised by: mhs
v4l2_buffer changes, added video capture example, various corrections.
Revision 0.5 2003-11-05 Revised by: mhs
Pixel format erratum.
Revision 0.4 2003-09-17 Revised by: mhs
Corrected source and Makefile to generate a PDF. SGML fixes. Added latest API changes. Closed gaps in the history chapter.
Revision 0.3 2003-02-05 Revised by: mhs
Another draft, more corrections.
Revision 0.2 2003-01-15 Revised by: mhs
Second draft, with corrections pointed out by Gerd Knorr.
Revision 0.1 2002-12-01 Revised by: mhs
First draft, based on documentation by Bill Dirks and discussions on the V4L mailing list.

Table of Contents
Introduction.. ix
1. Common API Elements.. 1

1.1. Opening and Closing Devices .. 1
1.1.1. Device Naming .. 1
1.1.2. Related Devices ... 2
1.1.3. Multiple Opens .. 2
1.1.4. Shared Data Streams.. 3
1.1.5. Functions ... 3

1.2. Querying Capabilities .. 3
1.3. Application Priority.. 3
1.4. Video Inputs and Outputs... 4
1.5. Audio Inputs and Outputs .. 5
1.6. Tuners and Modulators... 6

1.6.1. Tuners .. 6
1.6.2. Modulators... 6
1.6.3. Radio Frequency.. 7
1.6.4. Satellite Receivers ... 7

1.7. Video Standards ... 7
1.8. Controls .. 9
1.9. Data Formats .. 13

1.9.1. Data Format Negotiation ... 14
1.9.2. Image Format Enumeration ... 14

1.10. Cropping and Scaling... 15
1.11. Streaming Parameters... 18

2. Image Formats .. 21
2.1. Standard Image Formats .. 21
2.2. Colorspaces .. 22
2.3. RGB Formats ... 25
2.4. YUV Formats ... 27

V4L2_PIX_FMT_GREY (’GREY’) ... 27
V4L2_PIX_FMT_YUYV (’YUYV’).. 28
V4L2_PIX_FMT_UYVY (’UYVY’).. 29
V4L2_PIX_FMT_Y41P (’Y41P’)... 30
V4L2_PIX_FMT_YVU420 (’YV12’), V4L2_PIX_FMT_YUV420 (’YU12’).............. 31
V4L2_PIX_FMT_YVU410 (’YVU9’), V4L2_PIX_FMT_YUV410 (’YUV9’)............ 32
V4L2_PIX_FMT_YUV422P (’422P’).. 33
V4L2_PIX_FMT_YUV411P (’411P’).. 34
V4L2_PIX_FMT_NV12 (’NV12’), V4L2_PIX_FMT_NV21 (’NV21’) 35

2.5. Compressed Formats.. 36
2.6. Reserved Format Identifiers ... 36

3. Input/Output ... 37
3.1. Read/Write ... 37
3.2. Streaming I/O (Memory Mapping) .. 37
3.3. Streaming I/O (User Pointers).. 40
3.4. Asynchronous I/O .. 41
3.5. Buffers.. 41

3.5.1. Timecodes.. 45
3.6. Field Order ... 46

iii

4. Device Types .. 51
4.1. Video Capture Interface ... 51

4.1.1. Querying Capabilities .. 51
4.1.2. Supplemental Functions .. 51
4.1.3. Image Format Negotiation... 51
4.1.4. Reading Images ... 52

4.2. Video Overlay Interface ... 52
4.2.1. Querying Capabilities .. 52
4.2.2. Supplemental Functions .. 52
4.2.3. Setup .. 52
4.2.4. Overlay Window.. 53
4.2.5. Enabling Overlay... 55

4.3. Video Output Interface... 55
4.3.1. Querying Capabilities .. 55
4.3.2. Supplemental Functions .. 55
4.3.3. Image Format Negotiation... 56
4.3.4. Writing Images .. 56

4.4. Codec Interface .. 56
4.5. Effect Devices Interface ... 56
4.6. Raw VBI Data Interface... 57

4.6.1. Querying Capabilities .. 57
4.6.2. Supplemental Functions .. 57
4.6.3. Raw VBI Format Negotiation.. 57
4.6.4. Reading and writing VBI images .. 64

4.7. Sliced VBI Data Interface .. 64
4.7.1. Querying Capabilities .. 64
4.7.2. Supplemental Functions .. 65
4.7.3. Sliced VBI Format Negotiation... 65
4.7.4. Reading and writing sliced VBI data... 66

4.8. Teletext Interface.. 67
4.9. Radio Interface ... 68

4.9.1. Querying Capabilities .. 68
4.9.2. Supplemental Functions .. 68
4.9.3. Programming ... 68

4.10. RDS Interface... 68

I. Function Reference ... 70
V4L2 close() ... 72
V4L2 ioctl()... 73
ioctl VIDIOC_CROPCAP... 75
ioctl VIDIOC_ENUMAUDIO .. 77
ioctl VIDIOC_ENUMAUDOUT .. 78
ioctl VIDIOC_ENUM_FMT... 79
ioctl VIDIOC_ENUMINPUT ... 81
ioctl VIDIOC_ENUMOUTPUT ... 84
ioctl VIDIOC_ENUMSTD ... 86
ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO .. 90
ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT .. 92
ioctl VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP ... 94
ioctl VIDIOC_G_CROP, VIDIOC_S_CROP ... 95
ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL ... 97
ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF.. 99

iv

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT.. 102
ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY .. 105
ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT .. 107
ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP ... 109
ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR ... 111
ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT .. 114
ioctl VIDIOC_G_PARM, VIDIOC_S_PARM.. 116
ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY ... 120
ioctl VIDIOC_G_SLICED_VBI_CAP ... 122
ioctl VIDIOC_G_STD, VIDIOC_S_STD .. 124
ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER... 125
ioctl VIDIOC_LOG_STATUS .. 129
ioctl VIDIOC_OVERLAY .. 130
ioctl VIDIOC_QBUF, VIDIOC_DQBUF... 131
ioctl VIDIOC_QUERYBUF ... 133
ioctl VIDIOC_QUERYCAP ... 135
ioctl VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU.. 138
ioctl VIDIOC_QUERYSTD.. 141
ioctl VIDIOC_REQBUFS... 143
ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ... 145
V4L2 mmap().. 147
V4L2 munmap().. 149
V4L2 open() .. 150
V4L2 poll() ... 152
V4L2 read()... 153
V4L2 select()... 155
V4L2 write() ... 156

5. V4L2 Driver Programming.. 158
6. History ... 159

6.1. Differences between V4L and V4L2 ... 159
6.1.1. Opening and Closing Devices ... 159
6.1.2. Querying Capabilities .. 159
6.1.3. Video Sources .. 161
6.1.4. Tuning.. 161
6.1.5. Image Properties .. 162
6.1.6. Audio ... 163
6.1.7. Frame Buffer Overlay.. 164
6.1.8. Cropping .. 164
6.1.9. Reading Images, Memory Mapping .. 165

6.1.9.1. Capturing using the read method .. 165
6.1.9.2. Capturing using memory mapping.. 165

6.1.10. Reading Raw VBI Data ... 166
6.1.11. Miscellaneous .. 167

6.2. History of the V4L2 API.. 167
6.2.1. Early Versions.. 167
6.2.2. V4L2 Version 0.16 1999-01-31... 168
6.2.3. V4L2 Version 0.18 1999-03-16... 168
6.2.4. V4L2 Version 0.19 1999-06-05... 168
6.2.5. V4L2 Version 0.20 1999-09-10... 168
6.2.6. V4L2 Version 0.20 incremental changes... 170
6.2.7. V4L2 Version 0.20 2000-11-23... 171

v

6.2.8. V4L2 Version 0.20 2002-07-25... 171
6.2.9. V4L2 in Linux 2.5.46, 2002-10... 171
6.2.10. V4L2 2003-06-19 .. 175
6.2.11. V4L2 2003-11-05 .. 175
6.2.12. V4L2 in Linux 2.6.6, 2004-05-09 ... 176
6.2.13. V4L2 in Linux 2.6.8 .. 176
6.2.14. V4L2 spec erratum 2004-08-01... 176
6.2.15. V4L2 in Linux 2.6.14 .. 176
6.2.16. V4L2 in Linux 2.6.15 .. 177
6.2.17. V4L2 spec erratum 2005-11-27... 177
6.2.18. V4L2 spec erratum 2006-01-10... 177
6.2.19. V4L2 spec erratum 2006-02-03... 177

6.3. Relation of V4L2 to other Linux multimedia APIs ... 177
6.3.1. X Video Extension... 178
6.3.2. Digital Video ... 178
6.3.3. Audio Interfaces .. 178

A. Video For Linux Two Header File.. 179
B. Video Capture Example... 200
C. GNU Free Documentation License... 212

C.1. 0. PREAMBLE.. 212
C.2. 1. APPLICABILITY AND DEFINITIONS.. 212
C.3. 2. VERBATIM COPYING.. 213
C.4. 3. COPYING IN QUANTITY... 213
C.5. 4. MODIFICATIONS.. 214
C.6. 5. COMBINING DOCUMENTS .. 215
C.7. 6. COLLECTIONS OF DOCUMENTS.. 215
C.8. 7. AGGREGATION WITH INDEPENDENT WORKS... 216
C.9. 8. TRANSLATION ... 216
C.10. 9. TERMINATION.. 216
C.11. 10. FUTURE REVISIONS OF THIS LICENSE .. 216
C.12. Addendum ... 217

Bibliography.. 218

vi

List of Tables
1-1. Control IDs .. 10
2-1. struct v4l2_pix_format .. 21
2-2. enum v4l2_colorspace... 24
2-3. Packed RGB Image Formats ... 25
2-4. Reserved Image Formats ... 36
3-1. struct v4l2_buffer .. 42
3-2. enum v4l2_buf_type.. 44
3-3. Buffer Flags ... 44
3-4. enum v4l2_memory... 45
3-5. struct v4l2_timecode ... 45
3-6. Timecode Types... 46
3-7. Timecode Flags ... 46
3-8. enum v4l2_field... 47
4-1. struct v4l2_window ... 54
4-2. struct v4l2_clip2... 54
4-3. struct v4l2_rect .. 55
4-4. struct v4l2_vbi_format .. 58
4-5. Raw VBI Format Flags.. 59
4-6. struct v4l2_sliced_vbi_format... 65
4-7. Sliced VBI services ... 66
4-8. struct v4l2_sliced_vbi_data... 66
1. struct v4l2_cropcap... 75
2. struct v4l2_rect ... 76
1. struct v4l2_fmtdesc... 79
2. Image Format Description Flags .. 80
1. struct v4l2_input ... 81
2. Input Types ... 82
3. Input Status Flags ... 82
1. struct v4l2_output ... 84
2. Output Type .. 85
1. struct v4l2_standard.. 86
2. struct v4l2_fract .. 87
3. typedef v4l2_std_id .. 87
4. Video Standards (based on [ITU470>]).. 88
1. struct v4l2_audio .. 90
2. Audio Capability Flags ... 91
3. Audio Modes .. 91
1. struct v4l2_audioout ... 92
1. struct v4l2_mpeg_compression .. 94
1. struct v4l2_crop .. 96
1. struct v4l2_control .. 97
1. struct v4l2_framebuffer .. 99
2. Frame Buffer Capability Flags ... 100
3. Frame Buffer Flags ... 101
1. struct v4l2_format... 103
1. struct v4l2_frequency ... 105
1. struct v4l2_jpegcompression .. 109
2. JPEG Markers Flags ... 110
1. struct v4l2_modulator... 111

vii

2. Modulator Audio Transmission Flags .. 112
1. struct v4l2_streamparm .. 116
2. struct v4l2_captureparm ... 117
3. struct v4l2_outputparm... 117
4. Streaming Parameters Capabilites .. 118
5. Capture Parameters Flags ... 118
1. enum v4l2_priority ... 120
1. struct v4l2_sliced_vbi_cap ... 122
2. Sliced VBI services... 123
1. struct v4l2_tuner ... 125
2. enum v4l2_tuner_type .. 126
3. Tuner and Modulator Capability Flags ... 126
4. Tuner Audio Reception Flags ... 127
5. Tuner Audio Modes .. 127
6. Tuner Audio Matrix .. 128
1. struct v4l2_capability.. 135
2. Device Capabilities Flags ... 136
1. struct v4l2_queryctrl ... 138
2. struct v4l2_querymenu ... 139
3. enum v4l2_ctrl_type ... 139
4. Control Flags .. 140
1. struct v4l2_requestbuffers... 143
6-1. V4L Device Types, Names and Numbers ... 159

viii

Introduction
[to do]

If you have questions or ideas regarding the API, please try the Video4Linux mailing list:
https://listman.redhat.com/mailman/listinfo/video4linux-list

For documentation related requests contact the maintainer at mschimek@gmx.at
(mailto:mschimek@gmx.at).

The latest version of this document and the DocBook SGML sources is currently hosted at
http://v4l2spec.bytesex.org, and http://linuxtv.org/downloads/video4linux/API/V4L2_API.

ix

Chapter 1. Common API Elements
Programming a V4L2 device consists of these steps:

• Opening the device

• Changing device properties, selecting a video and audio input, video standard, picture brightness
a. o.

• Negotiating a data format

• Negotiating an input/output method

• The actual input/output loop

• Closing the device

In practice most steps are optional and can be executed out of order. It depends on the V4L2 device
type, you can read about the details in Chapter 4>. In this chapter we will discuss the basic concepts
applicable to all devices.

1.1. Opening and Closing Devices

1.1.1. Device Naming
V4L2 drivers are implemented as kernel modules, loaded manually by the system administrator or
automatically when a device is first opened. The driver modules plug into the "videodev" kernel
module. It provides helper functions and a common application interface specified in this document.

Each driver thus loaded registers one or more device nodes with major number 81 and a minor
number between 0 and 255. Assigning minor numbers to V4L2 devices is entirely up to the system
administrator, this is primarily intended to solve conflicts between devices.1 The module options to
select minor numbers are named after the device special file with a "_nr" suffix. For example
"video_nr" for /dev/video video capture devices. The number is an offset to the base minor
number associated with the device type. 2 When the driver supports multiple devices of the same
type more than one minor number can be assigned, separated by commas:

> insmod mydriver.o video_nr=0,1 radio_nr=0,1

In /etc/modules.conf this may be written as:

alias char-major-81-0 mydriver
alias char-major-81-1 mydriver
alias char-major-81-64 mydriver Ê>
options mydriver video_nr=0,1 radio_nr=0,1 Ë>

Ê When an application attempts to open a device special file with major number 81 and minor
number 0, 1, or 64, load "mydriver" (and the "videodev" module it depends upon).

Ë Register the first two video capture devices with minor number 0 and 1 (base number is 0), the
first two radio device with minor number 64 and 65 (base 64).

1

Chapter 1. Common API Elements

When no minor number is given as module option the driver supplies a default. Chapter 4>
recommends the base minor numbers to be used for the various device types. Obviously minor
numbers must be unique. When the number is already in use the offending device will not be
registered.

By convention system administrators create various character device special files with these major
and minor numbers in the /dev directory. The names recomended for the different V4L2 device
types are listed in Chapter 4>.

The creation of character special files (with mknod) is a privileged operation and devices cannot be
opened by major and minor number. That means applications cannot reliable scan for loaded or
installed drivers. The user must enter a device name, or the application can try the conventional
device names.

Under the device filesystem (devfs) the minor number options are ignored. V4L2 drivers (or by
proxy the "videodev" module) automatically create the required device files in the /dev/v4l
directory using the conventional device names above.

1.1.2. Related Devices
Devices can support several related functions. For example video capturing, video overlay and VBI
capturing are related because these functions share, amongst other, the same video input and tuner
frequency. V4L and earlier versions of V4L2 used the same device name and minor number for
video capturing and overlay, but different ones for VBI. Experience showed this approach has
several problems3, and to make things worse the V4L videodev module used to prohibit multiple
opens of a device.

As a remedy the present version of the V4L2 API relaxed the concept of device types with specific
names and minor numbers. For compatibility with old applications drivers must still register
different minor numbers to assign a default function to the device. But if related functions are
supported by the driver they must be available under all registered minor numbers. The desired
function can be selected after opening the device as described in Chapter 4>.

Imagine a driver supporting video capturing, video overlay, raw VBI capturing, and FM radio
reception. It registers three devices with minor number 0, 64 and 224 (this numbering scheme is
inherited from the V4L API). Regardless if /dev/video (81, 0) or /dev/vbi (81, 224) is opened
the application can select any one of the video capturing, overlay or VBI capturing functions.
Without programming (e. g. reading from the device with dd or cat) /dev/video captures video
images, while /dev/vbi captures raw VBI data. /dev/radio (81, 64) is invariable a radio device,
unrelated to the video functions. Being unrelated does not imply the devices can be used at the same
time, however. The open() function may very well return an EBUSY error code.

Besides video input or output the hardware may also support audio sampling or playback. If so, these
functions are implemented as OSS or ALSA PCM devices and eventually OSS or ALSA audio
mixer. The V4L2 API makes no provisions yet to find these related devices. If you have an idea
please write to the Video4Linux mailing list:
https://listman.redhat.com/mailman/listinfo/video4linux-list.

1.1.3. Multiple Opens
In general, V4L2 devices can be opened more than once. When this is supported by the driver, users
can for example start a "panel" application to change controls like brightness or audio volume, while

2

Chapter 1. Common API Elements

another application captures video and audio. In other words, panel applications are comparable to
an OSS or ALSA audio mixer application. When a device supports multiple functions like capturing
and overlay simultaneously, multiple opens allow concurrent use of the device by forked processes
or specialized applications.

Multiple opens are optional, although drivers should permit at least concurrent accesses without data
exchange, i. e. panel applications. This implies open() can return an EBUSY error code when the
device is already in use, as well as ioctl() functions initiating data exchange (namely the
VIDIOC_S_FMT ioctl), and the read() and write() functions.

Mere opening a V4L2 device does not grant exclusive access.4 Initiating data exchange however
assigns the right to read or write the requested type of data, and to change related properties, to this
file descriptor. Applications can request additional access privileges using the priority mechanism
described in Section 1.3>.

1.1.4. Shared Data Streams
V4L2 drivers should not support multiple applications reading or writing the same data stream on a
device by copying buffers, time multiplexing or similar means. This is better handled by a proxy
application in user space. When the driver supports stream sharing anyway it must be implemented
transparently. The V4L2 API does not specify how conflicts are solved.

1.1.5. Functions
To open and close V4L2 devices applications use the open() and close() function, respectively.
Devices are programmed using the ioctl() function as explained in the following sections.

1.2. Querying Capabilities
Because V4L2 covers a wide variety of devices not all aspects of the API are equally applicable to
all types of devices. Furthermore devices of the same type have different capabilities and this
specification permits the omission of a few complicated and less important parts of the API.

The VIDIOC_QUERYCAP ioctl is available to check if the kernel device is compatible with this
specification, and to query the functions and I/O methods supported by the device. Other features
can be queried by calling the respective ioctl, for example VIDIOC_ENUMINPUT to learn about the
number, types and names of video connectors on the device. Although abstraction is a major
objective of this API, the ioctl also allows driver specific applications to reliable identify the driver.

All V4L2 drivers must support VIDIOC_QUERYCAP. Applications should always call this ioctl after
opening the device.

1.3. Application Priority
When multiple applications share a device it may be desirable to assign them different priorities.
Contrary to the traditional "rm -rf /" school of thought a video recording application could for
example block other applications from changing video controls or switching the current TV channel.
Another objective is to permit low priority applications working in background, which can be

3

Chapter 1. Common API Elements

preempted by user controlled applications and automatically regain control of the device at a later
time.

Since these features cannot be implemented entirely in user space V4L2 defines the
VIDIOC_G_PRIORITY and VIDIOC_S_PRIORITY ioctls to request and query the access priority
associate with a file descriptor. Opening a device assigns a medium priority, compatible with earlier
versions of V4L2 and drivers not supporting these ioctls. Applications requiring a different priority
will usually call VIDIOC_S_PRIORITY after verifying the device with the VIDIOC_QUERYCAP ioctl.

Ioctls changing driver properties, such as VIDIOC_S_INPUT, return an EBUSY error code after
another application obtained higher priority. An event mechanism to notify applications about
asynchronous property changes has been proposed but not added yet.

1.4. Video Inputs and Outputs
Video inputs and outputs are physical connectors of a device. These can be for example RF
connectors (antenna/cable), CVBS a.k.a. Composite Video, S-Video or RGB connectors. Only video
and VBI capture devices have inputs, output devices have outputs, at least one each. Radio devices
have no video inputs or outputs.

To learn about the number and attributes of the available inputs and outputs applications can
enumerate them with the VIDIOC_ENUMINPUT and VIDIOC_ENUMOUTPUT ioctl, respectively. The
struct v4l2_input returned by the VIDIOC_ENUMINPUT ioctl also contains signal status information
applicable when the current video input is queried.

The VIDIOC_G_INPUT and VIDIOC_G_OUTPUT ioctl return the index of the current video input or
output. To select a different input or output applications call the VIDIOC_S_INPUT and
VIDIOC_S_OUTPUT ioctl. Drivers must implement all the input ioctls when the device has one or
more inputs, all the output ioctls when the device has one or more outputs.

Example 1-1. Information about the current video input

struct v4l2_input input;
int index;

if (-1 == ioctl (fd, VIDIOC_G_INPUT, &index)) {
perror ("VIDIOC_G_INPUT");
exit (EXIT_FAILURE);

}

memset (&input, 0, sizeof (input));
input.index = index;

if (-1 == ioctl (fd, VIDIOC_ENUMINPUT, &input)) {
perror ("VIDIOC_ENUMINPUT");
exit (EXIT_FAILURE);

}

printf ("Current input: %s\n", input.name);

4

Chapter 1. Common API Elements

Example 1-2. Switching to the first video input

int index;

index = 0;

if (-1 == ioctl (fd, VIDIOC_S_INPUT, &index)) {
perror ("VIDIOC_S_INPUT");
exit (EXIT_FAILURE);

}

1.5. Audio Inputs and Outputs
Audio inputs and outputs are physical connectors of a device. Video capture devices have inputs,
output devices have outputs, zero or more each. Radio devices have no audio inputs or outputs. They
have exactly one tuner which in fact is an audio source, but this API associates tuners with video
inputs or outputs only, and radio devices have none of these.5 A connector on a TV card to loop back
the received audio signal to a sound card is not considered an audio output.

Audio and video inputs and outputs are associated. Selecting a video source also selects an audio
source. This is most evident when the video and audio source is a tuner. Further audio connectors
can combine with more than one video input or output. Assumed two composite video inputs and
two audio inputs exist, there may be up to four valid combinations. The relation of video and audio
connectors is defined in the audioset field of the respective struct v4l2_input or struct v4l2_output,
where each bit represents the index number, starting at zero, of one audio input or output.

To learn about the number and attributes of the available inputs and outputs applications can
enumerate them with the VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT ioctl, respectively. The
struct v4l2_audio returned by the VIDIOC_ENUMAUDIO ioctl also contains signal status information
applicable when the current audio input is queried.

The VIDIOC_G_AUDIO and VIDIOC_G_AUDOUT ioctl report the current audio input and output,
respectively. Note that, unlike VIDIOC_G_INPUT and VIDIOC_G_OUTPUT these ioctls return a
structure as VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT do, not just an index.

To select an audio input and change its properties applications call the VIDIOC_S_AUDIO ioctl. To
select an audio output (which presently has no changeable properties) applications call the
VIDIOC_S_AUDOUT ioctl.

Drivers must implement all input ioctls when the device has one or more inputs, all output ioctls
when the device has one or more outputs. When the device has any audio inputs or outputs the driver
must set the V4L2_CAP_AUDIO flag in the struct v4l2_capability returned by the VIDIOC_QUERYCAP
ioctl.

Example 1-3. Information about the current audio input

struct v4l2_audio audio;

memset (&audio, 0, sizeof (audio));

if (-1 == ioctl (fd, VIDIOC_G_AUDIO, &audio)) {
perror ("VIDIOC_G_AUDIO");
exit (EXIT_FAILURE);

}

5

Chapter 1. Common API Elements

printf ("Current input: %s\n", audio.name);

Example 1-4. Switching to the first audio input

struct v4l2_audio audio;

memset (&audio, 0, sizeof (audio)); /* clear audio.mode, audio.reserved */

audio.index = 0;

if (-1 == ioctl (fd, VIDIOC_S_AUDIO, &audio)) {
perror ("VIDIOC_S_AUDIO");
exit (EXIT_FAILURE);

}

1.6. Tuners and Modulators

1.6.1. Tuners
Video input devices can have one or more tuners demodulating a RF signal. Each tuner is associated
with one or more video inputs, depending on the number of RF connectors on the tuner. The type
field of the respective struct v4l2_input returned by the VIDIOC_ENUMINPUT ioctl is set to
V4L2_INPUT_TYPE_TUNER and its tuner field contains the index number of the tuner.

Radio devices have exactly one tuner with index zero, no video inputs.

To query and change tuner properties applications use the VIDIOC_G_TUNER and VIDIOC_S_TUNER

ioctl, respectively. The struct v4l2_tuner returned by VIDIOC_G_TUNER also contains signal status
information applicable when the tuner of the current video input, or a radio tuner is queried. Note
that VIDIOC_S_TUNER does not switch the current tuner, when there is more than one at all. The
tuner is solely determined by the current video input. Drivers must support both ioctls and set the
V4L2_CAP_TUNER flag in the struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl when
the device has one or more tuners.

1.6.2. Modulators
Video output devices can have one or more modulators, uh, modulating a video signal for radiation
or connection to the antenna input of a TV set or video recorder. Each modulator is associated with
one or more video outputs, depending on the number of RF connectors on the modulator. The type
field of the respective struct v4l2_output returned by the VIDIOC_ENUMOUTPUT is set to
V4L2_OUTPUT_TYPE_MODULATOR and its modulator field contains the index number of the
modulator. This specification does not define radio output devices.

To query and change modulator properties applications use the VIDIOC_G_MODULATOR and
VIDIOC_S_MODULATOR ioctl. Note that VIDIOC_S_MODULATOR does not switch the current
modulator, when there is more than one at all. The modulator is solely determined by the current
video output. Drivers must support both ioctls and set the V4L2_CAP_TUNER (sic) flag in the

6

Chapter 1. Common API Elements

struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl when the device has one or more
modulators.

1.6.3. Radio Frequency
To get and set the tuner or modulator radio frequency applications use the VIDIOC_G_FREQUENCY
and VIDIOC_S_FREQUENCY ioctl which both take a pointer to a struct v4l2_frequency. These ioctls
are used for TV and radio devices alike. Drivers must support both ioctls when the tuner or
modulator ioctls are supported, or when the device is a radio device.

1.6.4. Satellite Receivers
To be discussed. See also proposals by Peter Schlaf, video4linux-list@redhat.com on 23 Oct 2002,
subject: "Re: [V4L] Re: v4l2 api".

1.7. Video Standards
Video devices typically support one or more different video standards or variations of standards.
Each video input and output may support another set of standards. This set is reported by the std
field of struct v4l2_input and struct v4l2_output returned by the VIDIOC_ENUMINPUT and
VIDIOC_ENUMOUTPUT ioctl, respectively.

V4L2 defines one bit for each analog video standard currently in use worldwide, and sets aside bits
for driver defined standards, e. g. hybrid standards to watch NTSC video tapes on PAL TVs and vice
versa. Applications can use the predefined bits to select a particular standard, although presenting the
user a menu of supported standards is preferred. To enumerate and query the attributes of the
supported standards applications use the VIDIOC_ENUMSTD ioctl.

Many of the defined standards are actually just variations of a few major standards. The hardware
may in fact not distinguish between them, or do so internal and switch automatically. Therefore
enumerated standards also contain sets of one or more standard bits.

Assume a hypothetic tuner capable of demodulating B/PAL, G/PAL and I/PAL signals. The first
enumerated standard is a set of B and G/PAL, switched automatically depending on the selected
radio frequency in UHF or VHF band. Enumeration gives a "PAL-B/G" or "PAL-I" choice. Similar a
Composite input may collapse standards, enumerating "PAL-B/G/H/I", "NTSC-M" and
"SECAM-D/K".6

To query and select the standard used by the current video input or output applications call the
VIDIOC_G_STD and VIDIOC_S_STD ioctl, respectively. The received standard can be sensed with
the VIDIOC_QUERYSTD ioctl. Note parameter of all these ioctls is a pointer to a v4l2_std_id type (a
standard set), not an index into the standard enumeration.7 Drivers must implement all video
standard ioctls when the device has one or more video inputs or outputs.

Special rules apply to USB cameras where the notion of video standards makes little sense. More
generally any capture device, output devices accordingly, which is

• incapable of capturing fields or frames at the nominal rate of the video standard, or

• where timestamps refer to the instant the field or frame was received by the driver, not the capture
time, or

7

Chapter 1. Common API Elements

• where sequence numbers refer to the frames received by the driver, not the captured frames.

Here the driver shall set the std field of struct v4l2_input and struct v4l2_output to zero, the
VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_QUERYSTD and VIDIOC_ENUMSTD ioctls shall return the
EINVAL error code.8

Example 1-5. Information about the current video standard

v4l2_std_id std_id;
struct v4l2_standard standard;

if (-1 == ioctl (fd, VIDIOC_G_STD, &std_id)) {
/* Note when VIDIOC_ENUMSTD always returns EINVAL this

is no video device or it falls under the USB exception,
and VIDIOC_G_STD returning EINVAL is no error. */

perror ("VIDIOC_G_STD");
exit (EXIT_FAILURE);

}

memset (&standard, 0, sizeof (standard));
standard.index = 0;

while (0 == ioctl (fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & std_id) {

printf ("Current video standard: %s\n", standard.name);
exit (EXIT_SUCCESS);

}

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno == EINVAL || standard.index == 0) {
perror ("VIDIOC_ENUMSTD");
exit (EXIT_FAILURE);

}

Example 1-6. Listing the video standards supported by the current input

struct v4l2_input input;
struct v4l2_standard standard;

memset (&input, 0, sizeof (input));

if (-1 == ioctl (fd, VIDIOC_G_INPUT, &input.index)) {
perror ("VIDIOC_G_INPUT");
exit (EXIT_FAILURE);

}

if (-1 == ioctl (fd, VIDIOC_ENUMINPUT, &input)) {
perror ("VIDIOC_ENUM_INPUT");
exit (EXIT_FAILURE);

}

8

Chapter 1. Common API Elements

printf ("Current input %s supports:\n", input.name);

memset (&standard, 0, sizeof (standard));
standard.index = 0;

while (0 == ioctl (fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & input.std)

printf ("%s\n", standard.name);

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno != EINVAL || standard.index == 0) {
perror ("VIDIOC_ENUMSTD");
exit (EXIT_FAILURE);

}

Example 1-7. Selecting a new video standard

struct v4l2_input input;
v4l2_std_id std_id;

memset (&input, 0, sizeof (input));

if (-1 == ioctl (fd, VIDIOC_G_INPUT, &input.index)) {
perror ("VIDIOC_G_INPUT");
exit (EXIT_FAILURE);

}

if (-1 == ioctl (fd, VIDIOC_ENUMINPUT, &input)) {
perror ("VIDIOC_ENUM_INPUT");
exit (EXIT_FAILURE);

}

if (0 == (input.std & V4L2_STD_PAL_BG)) {
fprintf (stderr, "Oops. B/G PAL is not supported.\n");
exit (EXIT_FAILURE);

}

/* Note this is also supposed to work when only B
or G/PAL is supported. */

std_id = V4L2_STD_PAL_BG;

if (-1 == ioctl (fd, VIDIOC_S_STD, &std_id)) {
perror ("VIDIOC_S_STD");
exit (EXIT_FAILURE);

}

9

Chapter 1. Common API Elements

1.8. Controls
Devices typically have a number of user-settable controls such as brightness, saturation and so on,
which would be presented to the user on a graphical user interface. But, different devices will have
different controls available, and furthermore, the range of possible values, and the default value will
vary from device to device. The control ioctls provide the information and a mechanism to create a
nice user interface for these controls that will work correctly with any device.

All controls are accessed using an ID value. V4L2 defines several IDs for specific purposes. Drivers
can also implement their own custom controls using V4L2_CID_PRIVATE_BASE and higher values.
The pre-defined control IDs have the prefix V4L2_CID_, and are listed in Table 1-1>. The ID is used
when querying the attributes of a control, and when getting or setting the current value.

Generally applications should present controls to the user without assumptions about their purpose.
Each control comes with a name string the user is supposed to understand. When the purpose is
non-intuitive the driver writer should provide a user manual, a user interface plug-in or a driver
specific panel application. Predefined IDs were introduced to change a few controls
programmatically, for example to mute a device during a channel switch.

Drivers may enumerate different controls after switching the current video input or output, tuner or
modulator, or audio input or output. Different in the sense of other bounds, another default and
current value, step size or other menu items. A control with a certain custom ID can also change
name and type.9 Control values are stored globally, they do not change when switching except to stay
within the reported bounds. They also do not change e. g. when the device is opened or closed, when
the tuner radio frequency is changed or generally never without application request. Since V4L2
specifies no event mechanism, panel applications intended to cooperate with other panel applications
(be they built into a larger application, as a TV viewer) may need to regularly poll control values to
update their user interface.10

Table 1-1. Control IDs

ID Type Description
V4L2_CID_BASE First predefined ID, equal to

V4L2_CID_BRIGHTNESS.

V4L2_CID_BRIGHTNESS integer Picture brightness, or more precisely, the black
level. Will not turn up the intelligence of the
program you’re watching.

V4L2_CID_CONTRAST integer Picture contrast or luma gain.

V4L2_CID_SATURATION integer Picture color saturation or chroma gain.

V4L2_CID_HUE integer Hue or color balance.

V4L2_CID_AUDIO_VOLUME integer Overall audio volume. Note some drivers also
provide an OSS or ALSA mixer interface.

V4L2_CID_AUDIO_BALANCE integer Audio stereo balance. Minimum corresponds to
all the way left, maximum to right.

V4L2_CID_AUDIO_BASS integer Audio bass adjustment.

V4L2_CID_AUDIO_TREBLE integer Audio treble adjustment.

V4L2_CID_AUDIO_MUTE boolean Mute audio, i. e. set the volume to zero, however
without affecting V4L2_CID_AUDIO_VOLUME.
Like ALSA drivers, V4L2 drivers must mute at
load time to avoid excessive noise. Actually the
entire device should be reset to a low power
consumption state.

10

Chapter 1. Common API Elements

ID Type Description
V4L2_CID_AUDIO_LOUDNESS boolean Loudness mode (bass boost).

V4L2_CID_BLACK_LEVEL integer Another name for brightness (not a synonym of
V4L2_CID_BRIGHTNESS). [?]

V4L2_CID_AUTO_WHITE_BALANCE boolean Automatic white balance (cameras).

V4L2_CID_DO_WHITE_BALANCE button This is an action control. When set (the value is
ignored), the device will do a white balance and
then hold the current setting. Contrast this with
the boolean V4L2_CID_AUTO_WHITE_BALANCE,
which, when activated, keeps adjusting the white
balance.

V4L2_CID_RED_BALANCE integer Red chroma balance.

V4L2_CID_BLUE_BALANCE integer Blue chroma balance.

V4L2_CID_GAMMA integer Gamma adjust.

V4L2_CID_WHITENESS integer Whiteness for grey-scale devices. This is a
synonym for V4L2_CID_GAMMA.

V4L2_CID_EXPOSURE integer Exposure (cameras). [Unit?]

V4L2_CID_AUTOGAIN boolean Automatic gain/exposure control.

V4L2_CID_GAIN integer Gain control.

V4L2_CID_HFLIP boolean Mirror the picture horizontally.

V4L2_CID_VFLIP boolean Mirror the picture vertically.

V4L2_CID_HCENTER integer Horizontal image centering.

V4L2_CID_VCENTER integer Vertical image centering. Centering is intended to
physically adjust cameras. For image cropping see
Section 1.10>, for clipping Section 4.2>.

V4L2_CID_LASTP1 End of the predefined control IDs (currently
V4L2_CID_VCENTER + 1).

V4L2_CID_PRIVATE_BASE ID of the first custom (driver specific) control.
Applications depending on particular custom
controls should check the driver name and
version, see Section 1.2>.

Applications can enumerate the available controls with the VIDIOC_QUERYCTRL and
VIDIOC_QUERYMENU ioctls, get and set a control value with the VIDIOC_G_CTRL and
VIDIOC_S_CTRL ioctls. Drivers must implement VIDIOC_QUERYCTRL, VIDIOC_G_CTRL and
VIDIOC_S_CTRL when the device has one or more controls, VIDIOC_QUERYMENU when it has one
or more menu type controls.

Example 1-8. Enumerating all controls

struct v4l2_queryctrl queryctrl;
struct v4l2_querymenu querymenu;

static void
enumerate_menu (void)
{

printf (" Menu items:\n");

memset (&querymenu, 0, sizeof (querymenu));
querymenu.id = queryctrl.id;

11

Chapter 1. Common API Elements

for (querymenu.index = queryctrl.minimum;
querymenu.index <= queryctrl.maximum;
querymenu.index++) {
if (0 == ioctl (fd, VIDIOC_QUERYMENU, &querymenu)) {

printf (" %s\n", querymenu.name);
} else {

perror ("VIDIOC_QUERYMENU");
exit (EXIT_FAILURE);

}
}

}

memset (&queryctrl, 0, sizeof (queryctrl));

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {

if (0 == ioctl (fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

printf ("Control %s\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu ();

} else {
if (errno == EINVAL)

continue;

perror ("VIDIOC_QUERYCTRL");
exit (EXIT_FAILURE);

}
}

for (queryctrl.id = V4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {

if (0 == ioctl (fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

printf ("Control %s\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu ();

} else {
if (errno == EINVAL)

break;

perror ("VIDIOC_QUERYCTRL");
exit (EXIT_FAILURE);

}
}

12

Chapter 1. Common API Elements

Example 1-9. Changing controls

struct v4l2_queryctrl queryctrl;
struct v4l2_control control;

memset (&queryctrl, 0, sizeof (queryctrl));
queryctrl.id = V4L2_CID_BRIGHTNESS;

if (-1 == ioctl (fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (errno != EINVAL) {

perror ("VIDIOC_QUERYCTRL");
exit (EXIT_FAILURE);

} else {
printf ("V4L2_CID_BRIGHTNESS is not supported\n");

}
} else if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED) {

printf ("V4L2_CID_BRIGHTNESS is not supported\n");
} else {

memset (&control, 0, sizeof (control));
control.id = V4L2_CID_BRIGHTNESS;
control.value = queryctrl.default_value;

if (-1 == ioctl (fd, VIDIOC_S_CTRL, &control)) {
perror ("VIDIOC_S_CTRL");
exit (EXIT_FAILURE);

}
}

memset (&control, 0, sizeof (control));
control.id = V4L2_CID_CONTRAST;

if (0 == ioctl (fd, VIDIOC_G_CTRL, &control)) {
control.value += 1;

/* The driver may clamp the value or return ERANGE, ignored here */

if (-1 == ioctl (fd, VIDIOC_S_CTRL, &control)
&& errno != ERANGE) {

perror ("VIDIOC_S_CTRL");
exit (EXIT_FAILURE);

}
/* Ignore if V4L2_CID_CONTRAST is unsupported */
} else if (errno != EINVAL) {

perror ("VIDIOC_G_CTRL");
exit (EXIT_FAILURE);

}

control.id = V4L2_CID_AUDIO_MUTE;
control.value = TRUE; /* silence */

/* Errors ignored */
ioctl (fd, VIDIOC_S_CTRL, &control);

13

Chapter 1. Common API Elements

1.9. Data Formats

1.9.1. Data Format Negotiation
Different devices exchange different kinds of data with applications, for example video images, raw
or sliced VBI data, RDS datagrams. Even within one kind many different formats are possible, in
particular an abundance of image formats. Although drivers must provide a default and the selection
persists across closing and reopening a device, applications should always negotiate a data format
before engaging in data exchange. Negotiation means the application asks for a particular format and
the driver selects and reports the best the hardware can do to satisfy the request. Of course
applications can also just query the current selection.

A single mechanism exists to negotiate all data formats using the aggregate struct v4l2_format and
the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls. Additionally the VIDIOC_TRY_FMT ioctl can be
used to examine what the hardware could do, without actually selecting a new data format. The data
formats supported by the V4L2 API are covered in the respective device section in Chapter 4>. For a
closer look at image formats see Chapter 2>.

The VIDIOC_S_FMT ioctl is a major turning-point in the initialization sequence. Prior to this point
multiple panel applications can access the same device concurrently to select the current input,
change controls or modify other properties. The first VIDIOC_S_FMT assigns a logical stream (video
data, VBI data etc.) exclusively to one file descriptor.

Exclusive means no other application, more precisely no other file descriptor, can grab this stream or
change device properties inconsistent with the negotiated parameters. A video standard change for
example, when the new standard uses a different number of scan lines, can invalidate the selected
image format. Therefore only the file descriptor owning the stream can make invalidating changes.
Accordingly multiple file descriptors which grabbed different logical streams prevent each other
from interfering with their settings. When for example video overlay is about to start or already in
progress, simultaneous video capturing may be restricted to the same cropping and image size.

When applications omit the VIDIOC_S_FMT ioctl its locking side effects are implied by the next
step, the selection of an I/O method with the VIDIOC_REQBUFS ioctl or implicit with the first
read() or write() call.

Generally only one logical stream can be assigned to a file descriptor, the exception being drivers
permitting simultaneous video capturing and overlay using the same file descriptor for compatibility
with V4L and earlier versions of V4L2. Switching the logical stream or returning into "panel mode"
is possible by closing and reopening the device. Drivers may support a switch using VIDIOC_S_FMT.

All drivers exchanging data with applications must support the VIDIOC_G_FMT and VIDIOC_S_FMT

ioctl. Implementation of the VIDIOC_TRY_FMT is highly recommended but optional.

1.9.2. Image Format Enumeration
Apart of the generic format negotiation functions a special ioctl to enumerate all image formats
supported by video capture, overlay or output devices is available.11

The VIDIOC_ENUM_FMT ioctl must be supported by all drivers exchanging image data with
applications.

Important: Drivers are not supposed to convert image formats in kernel space. They must
enumerate only formats directly supported by the hardware. If necessary driver writers should
publish an example conversion routine or library for integration into applications.

14

Chapter 1. Common API Elements

1.10. Cropping and Scaling
Some video capture devices can take a subsection of the complete picture and shrink or enlarge to an
image of arbitrary size. We call these abilities cropping and scaling. Not quite correct "cropping"
shall also refer to the inverse process, output devices showing an image in only a region of the
picture, and/or scaled from a source image of different size.

To crop and scale this API defines a source and target rectangle. On a video capture and overlay
device the source is the received video picture, the target is the captured or overlaid image. On a
video output device the source is the image passed by the application and the target is the generated
video picture. The remainder of this section refers only to video capture drivers, the definitions apply
to output drivers accordingly.

Figure 1-1. Cropping and Scaling

v4l2_cropcap.bounds

v4l2_cropcap.defrect

v4l2_crop.c

v4l2_format

It is assumed the driver can capture a subsection of the picture within an arbitrary capture window.
Its bounds are defined by struct v4l2_cropcap, giving the coordinates of the top, left corner and
width and height of the window in pixels. Origin and units of the coordinate system in the analog
domain are arbitrarily chosen by the driver writer.12

The source rectangle is defined by struct v4l2_crop, giving the coordinates of its top, left corner,
width and height using the same coordinate system as struct v4l2_cropcap. The source rectangle
must lie completely within the capture window. Further each driver defines a default source
rectangle. The center of this rectangle shall align with the center of the active picture area of the
video signal, and cover what the driver writer considers the complete picture. The source rectangle is
set to the default when the driver is first loaded, but not later.

The target rectangle is given either by the width and height fields of struct v4l2_pix_format or the
width and height fields of the struct v4l2_rect w substructure of struct v4l2_window.

In principle cropping and scaling always happens. When the device supports scaling but not
cropping, applications will be unable to change the cropping rectangle. It remains at the defaults all
the time. When the device supports cropping but not scaling, changing the image size will also affect

15

Chapter 1. Common API Elements

the cropping size in order to maintain a constant scaling factor. The position of the cropping
rectangle is only adjusted to move the rectangle completely inside the capture window.

When cropping and scaling is supported applications can change both the source and target rectangle.
Various hardware limitations must be expected, for example discrete scaling factors, different scaling
abilities in horizontal and vertical direction, limitations of the image size or the cropping alignment.
Therefore as usual drivers adjust the requested parameters against hardware capabilities and return
the actual values selected. An important difference, because two rectangles are defined, is that the
last rectangle changed shall take priority, and the driver may also adjust the opposite rectangle.

Suppose scaling is restricted to a factor 1:1 or 2:1 in either direction and the image size must be a
multiple of 16 × 16 pixels. The cropping rectangle be set to the upper limit, 640 × 400 pixels at offset
0, 0. Let a video capture application request an image size of 300 × 225 pixels, assuming video will
be scaled down from the "full picture" accordingly. The driver will set the image size to the closest
possible values 304 × 224, then choose the cropping rectangle closest to the requested size, that is
608 × 224 (224 × 2:1 would exceed the limit 400). The offset 0, 0 is still valid, thus unmodified.
Given the default cropping rectangle reported by VIDIOC_CROPCAP the application can easily
propose another offset to center the cropping rectangle. Now the application may insist on covering
an area using an aspect closer to the original request. Sheepish it asks for a cropping rectangle of
608 × 456 pixels. The present scaling factors limit cropping to 640 × 384, so the driver returns the
cropping size 608 × 384 and accordingly adjusts the image size to 304 × 192.

Eventually some crop or scale parameters are locked, for example when the driver supports
simultaneous video capturing and overlay, another application already started overlay and the
cropping parameters cannot be changed anymore. Also VIDIOC_TRY_FMT cannot change the
cropping rectangle. In these cases the driver has to approach the closest values possible without
adjusting the opposite rectangle.

The struct v4l2_cropcap, which also reports the pixel aspect ratio, can be obtained with the
VIDIOC_CROPCAP ioctl. To get or set the current cropping rectangle applications call the
VIDIOC_G_CROP or VIDIOC_S_CROP ioctl, respectively. All video capture and output devices must
support the VIDIOC_CROPCAP ioctl. The VIDIOC_G_CROP and VIDIOC_S_CROP ioctls only when
the cropping rectangle can be changed.

Note as usual the cropping parameters remain unchanged across closing and reopening a device.
Applications should ensure the parameters are suitable before starting I/O.

Example 1-10. Resetting the cropping parameters

(A video capture device is assumed.)

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect;

/* Ignore if cropping is not supported (EINVAL) */

16

Chapter 1. Common API Elements

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {

perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example 1-11. Simple downscaling

(A video capture device is assumed.)

struct v4l2_cropcap cropcap;
struct v4l2_format format;

reset_cropping_parameters ();

/* Scale down to 1/4 size of full picture */

memset (&format, 0, sizeof (format)); /* defaults */

format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

format.fmt.pix.width = cropcap.defrect.width >> 1;
format.fmt.pix.height = cropcap.defrect.height >> 1;
format.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

if (-1 == ioctl (fd, VIDIOC_S_FMT, &format)) {
perror ("VIDIOC_S_FORMAT");
exit (EXIT_FAILURE);

}

/* We could check now what we got, the exact scaling factor
or if the driver can scale at all. At mere 2:1 the cropping
rectangle was probably not changed. */

Example 1-12. Current scaling factor and pixel aspect

(A video capture device is assumed.)

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format format;
double hscale, vscale;
double aspect;
int dwidth, dheight;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));

17

Chapter 1. Common API Elements

crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_CROP, &crop)) {
if (errno != EINVAL) {

perror ("VIDIOC_G_CROP");
exit (EXIT_FAILURE);

}

/* Cropping not supported */
crop.c = cropcap.defrect;

}

memset (&format, 0, sizeof (format));
format.fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_FMT, &format)) {
perror ("VIDIOC_G_FMT");
exit (EXIT_FAILURE);

}

hscale = format.fmt.pix.width / (double) crop.c.width;
vscale = format.fmt.pix.height / (double) crop.c.height;

aspect = cropcap.pixelaspect.numerator /
(double) cropcap.pixelaspect.denominator;

aspect = aspect * hscale / vscale;

/* Aspect corrected display size */

dwidth = format.fmt.pix.width / aspect;
dheight = format.fmt.pix.height;

1.11. Streaming Parameters
Streaming parameters are intended to optimize the video capture process as well as I/O. Presently
applications can request a high quality capture mode with the VIDIOC_S_PARM ioctl.

The current video standard determines a nominal number of frames per second. If less than this
number of frames is to be captured or output, applications can request frame skipping or duplicating
on the driver side. This is especially useful when using the read() or write(), which are not
augmented by timestamps or sequence counters, and to avoid unneccessary data copying.

Finally these ioctls can be used to determine the number of buffers used internally by a driver in
read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM

ioctl, respectively. They take a pointer to a struct v4l2_streamparm, which contains a union holding
separate parameters for input and output devices.

These ioctls are optional, drivers need not implement them. If so, they return the EINVAL error code.

18

Chapter 1. Common API Elements

Notes
1. Access permissions are associated with character device special files, we must ensure device

numbers cannot change with load order. To this end minor numbers are no longer automatically
assigned by the "videodev" module as in V4L but requested by the driver. The defaults will
suffice for most people, unless two drivers are used which compete for the same minor numbers.

2. In earlier versions of the V4L2 API the module options where named after the device special file
with a "unit_" prefix, expressing the minor number itself, not an offset. Rationale for this change
is unknown. Lastly the naming and semantics are just a convention among driver writers, the
point to note is that minor numbers are not supposed to be hardcoded into drivers.

3. Given a device file name one cannot reliable find related devices. For once names are arbitrary,
they can be chosen freely by the system administrator. Also when there are multiple devices and
only some support VBI capturing, say, /dev/video2 is not necessarily related to /dev/vbi2.
We already noted finding devices by name or minor number is unreliable, accordingly useful is
the ioctl offered by V4L to query the minor numbers of related devices.

4. Drivers could recognize the O_EXCL open flag. Presently this is not required, so application
cannot know if it really works.

5. Actually struct v4l2_audio ought to have a tuner field like struct v4l2_input, not only making
the API more consistent but also permitting radio devices with multiple tuners.

6. Some users are already confused by technical terms PAL, NTSC and SECAM. There is no point
asking them to distinguish between B, G, D, or K when the software or hardware can do that
automatically.

7. An alternative to the current scheme is to use pointers to indices as arguments of
VIDIOC_G_STD and VIDIOC_S_STD, the struct v4l2_input and struct v4l2_output std field
would be a set of indices like audioset.

Indices are consistent with the rest of the API and identify the standard unambiguously. In the present
scheme of things an enumerated standard is looked up by v4l2_std_id. Now the standards supported by the
inputs of a device can overlap. Just assume the tuner and composite input in the example above both exist
on a device. An enumeration of "PAL-B/G", "PAL-H/I" suggests a choice which does not exist. We cannot
merge or omit sets, because applications would be unable to find the standards reported by VIDIOC_G_STD.
That leaves separate enumerations for each input. Also selecting a standard by v4l2_std_id can be
ambiguous. Advantage of this method is that applications need not identify the standard indirectly, after
enumerating.

So in summary, the lookup itself is unavoidable. The difference is only whether the lookup is necessary to
find an enumerated standard or to switch to a standard by v4l2_std_id.

8. See Section 3.5> for a rationale. Probably even USB cameras follow some well known video
standard. It might have been better to explicitly indicate elsewhere if a device cannot live up to
normal expectations, instead of this exception.

9. It will be more convenient for applications if drivers make use of the
V4L2_CTRL_FLAG_DISABLED flag, but that was never required.

10. Applications could call an ioctl to request events. After another process called VIDIOC_S_CTRL

or another ioctl changing shared properties the select() function would indicate readability
until any ioctl (querying the properties) is called.

11. Enumerating formats an application has no a-priori knowledge of (otherwise it could explicitely
ask for them and need not enumerate) seems useless, but there are applications serving as proxy
between drivers and the actual video applications for which this is useful.

19

Chapter 1. Common API Elements

12. It may be desirable to refer to the cropping area in terms of sampling frequency and scanning
system lines, but in order to support a wide range of hardware we better make as few
assumptions as possible.

20

Chapter 2. Image Formats
The V4L2 API was primarily designed for devices exchanging image data with applications. The
v4l2_pix_format structure defines the format and layout of an image in memory. Image formats are
negotiated with the VIDIOC_S_FMT ioctl. (The explanations here focus on video capturing and
output, for overlay frame buffer formats see also VIDIOC_G_FBUF.)

Table 2-1. struct v4l2_pix_format

__u32 width Image width in pixels.

__u32 height Image height in pixels.

Applications set these fields to request an image size, drivers return the closest possible values. In case of planar formats the width and height applies to the largest plane. To avoid ambiguities drivers must return values rounded up to a multiple of the scale factor of any smaller planes. For example when the image format is YUV 4:2:0, width and height must be multiples of two.

__u32 pixelformat The pixel format or type of compression, set by
the application. This is a little endian four
character code. V4L2 defines standard RGB
formats in Table 2-3>, YUV formats in Section
2.4>, and reserved codes in Table 2-4>

enum v4l2_field field Video images are typically interlaced.
Applications can request to capture or output only
the top or bottom field, or both fields interlaced or
sequentially stored in one buffer or alternating in
separate buffers. Drivers return the actual field
order selected. For details see Section 3.6>.

__u32 bytesperline Distance in bytes between the leftmost pixels in
two adjacent lines.

Both applications and drivers can set this field to request padding bytes at the end of each line. Drivers however may ignore the value requested by the application, returning width times bytes per pixel or a larger value required by the hardware. That implies applications can just set this field to zero to get a reasonable default. Video hardware may access padding bytes, therefore they must reside in accessible memory. Consider cases where padding bytes after the last line of an image cross a system page boundary. Input devices may write padding bytes, the value is undefined. Output devices ignore the contents of padding bytes. When the image format is planar the bytesperline value applies to the largest plane and is divided by the same factor as the width field for any smaller planes. For example the Cb and Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a multiple of the scale factor.

__u32 sizeimage Size in bytes of the buffer to hold a complete
image, set by the driver. Usually this is
bytesperline times height. When the image
consists of variable length compressed data this is
the maximum number of bytes required to hold an
image.

enum v4l2_colorspace colorspace This information supplements the pixelformat
and must be set by the driver, see Section 2.2>.

__u32 priv Reserved for custom (driver defined) additional
information about formats. When not used drivers
and applications must set this field to zero.

2.1. Standard Image Formats
In order to exchange images between drivers and applications, it is necessary to have standard image
data formats which both sides will interpret the same way. V4L2 includes several such formats, and
this section is intended to be an unambiguous specification of the standard image data formats in
V4L2.

V4L2 drivers are not limited to these formats, however. Driver-specific formats are possible. In that
case the application may depend on a codec to convert images to one of the standard formats when
needed. But the data can still be stored and retrieved in the proprietary format. For example, a device
may support a proprietary compressed format. Applications can still capture and save the data in the

21

Chapter 2. Image Formats

compressed format, saving much disk space, and later use a codec to convert the images to the X
Windows screen format when the video is to be displayed.

Even so, ultimately, some standard formats are needed, so the V4L2 specification would not be
complete without well-defined standard formats.

The V4L2 standard formats are mainly uncompressed formats. The pixels are always arranged in
memory from left to right, and from top to bottom. The first byte of data in the image buffer is
always for the leftmost pixel of the topmost row. Following that is the pixel immediately to its right,
and so on until the end of the top row of pixels. Following the rightmost pixel of the row there may
be zero or more bytes of padding to guarantee that each row of pixel data has a certain alignment.
Following the pad bytes, if any, is data for the leftmost pixel of the second row from the top, and so
on. The last row has just as many pad bytes after it as the other rows.

In V4L2 each format has an identifier which looks like PIX_FMT_XXX, defined in the videodev.h
header file. These identifiers represent four character codes which are also listed below, however
they are not the same as those used in the Windows world.

2.2. Colorspaces
[intro]

Gamma Correction

[to do]

E’
R

= f(R)

E’
G

= f(G)

E’
B

= f(B)

Construction of luminance and color-difference signals

[to do]

E’
Y

= Coeff
R

E’
R

+ Coeff
G

E’
G

+ Coeff
B

E’
B

(E’
R

- E’
Y
) = E’

R
- Coeff

R
E’

R
- Coeff

G
E’

G
- Coeff

B
E’

B

(E’
B

- E’
Y
) = E’

B
- Coeff

R
E’

R
- Coeff

G
E’

G
- Coeff

B
E’

B

Re-normalized color-difference signals

The color-difference signals are scaled back to unity range [-0.5;+0.5]:

K
B

= 0.5 / (1 - Coeff
B
)

K
R

= 0.5 / (1 - Coeff
R
)

P
B

= K
B

(E’
B

- E’
Y
) = 0.5 (Coeff

R
/ Coeff

B
) E’

R
+ 0.5 (Coeff

G
/ Coeff

B
) E’

G
+ 0.5 E’

B

P
R

= K
R

(E’
R

- E’
Y
) = 0.5 E’

R
+ 0.5 (Coeff

G
/ Coeff

R
) E’

G
+ 0.5 (Coeff

B
/ Coeff

R
) E’

B

Quantization

[to do]

Y’ = (Lum. Levels - 1) · E’
Y

+ Lum. Offset

C
B

= (Chrom. Levels - 1) · P
B

+ Chrom. Offset

22

Chapter 2. Image Formats

C
R

= (Chrom. Levels - 1) · P
R

+ Chrom. Offset

Rounding to the nearest integer and clamping to the range [0;255] finally yields the digital color
components Y’CbCr stored in YUV images.

Example 2-1. ITU-R Rec. BT.601 color conversion

Forward Transformation

int ER, EG, EB; /* gamma corrected RGB input [0;255] */
int Y1, Cb, Cr; /* output [0;255] */

double r, g, b; /* temporaries */
double y1, pb, pr;

int
clamp (double x)
{

int r = x; /* round to nearest */

if (r < 0) return 0;
else if (r > 255) return 255;
else return r;

}

r = ER / 255.0;
g = EG / 255.0;
b = EB / 255.0;

y1 = 0.299 * r + 0.587 * g + 0.114 * b;
pb = -0.169 * r - 0.331 * g + 0.5 * b;
pr = 0.5 * r - 0.419 * g - 0.081 * b;

Y1 = clamp (219 * y1 + 16);
Cb = clamp (224 * pb + 128);
Cr = clamp (224 * pr + 128);

/* or shorter */

y1 = 0.299 * ER + 0.587 * EG + 0.114 * EB;

Y1 = clamp ((219 / 255.0) * y1 + 16);
Cb = clamp (((224 / 255.0) / (2 - 2 * 0.114)) * (EB - y1) + 128);
Cr = clamp (((224 / 255.0) / (2 - 2 * 0.299)) * (ER - y1) + 128);

Inverse Transformation

int Y1, Cb, Cr; /* gamma pre-corrected input [0;255] */
int ER, EG, EB; /* output [0;255] */

double r, g, b; /* temporaries */
double y1, pb, pr;

int
clamp (double x)
{

23

Chapter 2. Image Formats

int r = x; /* round to nearest */

if (r < 0) return 0;
else if (r > 255) return 255;
else return r;

}

y1 = (255 / 219.0) * (Y1 - 16);
pb = (255 / 224.0) * (Cb - 128);
pr = (255 / 224.0) * (Cr - 128);

r = 1.0 * y1 + 0 * pb + 1.402 * pr;
g = 1.0 * y1 - 0.344 * pb - 0.714 * pr;
b = 1.0 * y1 + 1.772 * pb + 0 * pr;

ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */
EG = clamp (g * 255);
EB = clamp (b * 255);

Table 2-2. enum v4l2_colorspace

IdentifierValue DescriptionChromaticitiesa White
Point

Gamma
Correc-
tion

Lumi-
nance
E’Y

Quantization

Red Green Blue Y’ Cb, Cr
V4L2_COLORSPACE_SMPTE170M1 NTSC/PAL

accord-
ing to
SMPTE170M>,
ITU601>

x = 0.630,
y = 0.340

x = 0.310,
y = 0.595

x = 0.155,
y = 0.070

x = 0.3127,
y = 0.3290,
Illumi-
nant D65

E’ =
4.5 I for I≤0.018,
1.099 I0.45 -
0.099 for 0.018 < I

0.299 E’R

+ 0.587 E’G

+ 0.114 E’B

219 E’Y + 16224 PB,R + 128

V4L2_COLORSPACE_SMPTE240M2 1125-
Line
(US)
HDTV,
see
SMPTE240M>

x = 0.630,
y = 0.340

x = 0.310,
y = 0.595

x = 0.155,
y = 0.070

x = 0.3127,
y = 0.3290,
Illumi-
nant D65

E’ =
4 I for I≤0.0228,
1.1115 I0.45 -
0.1115 for 0.0228 < I

0.212 E’R

+ 0.701 E’G

+ 0.087 E’B

219 E’Y + 16224 PB,R + 128

V4L2_COLORSPACE_REC7093 HDTV
and
modern
devices,
see
ITU709>

x = 0.640,
y = 0.330

x = 0.300,
y = 0.600

x = 0.150,
y = 0.060

x = 0.3127,
y = 0.3290,
Illumi-
nant D65

E’ =
4.5 I for I≤0.018,
1.099 I0.45 -
0.099 for 0.018 < I

0.2125 E’R

+ 0.7154 E’G

+ 0.0721 E’B

219 E’Y + 16224 PB,R + 128

V4L2_COLORSPACE_BT8784 Broken
Bt878
extentsb,
ITU601>

? ? ? ? ?
0.299 E’R

+ 0.587 E’G

+ 0.114 E’B

237 E’Y + 16224 PB,R + 128
(proba-
bly)

24

Chapter 2. Image Formats

IdentifierValue DescriptionChromaticitiesa White
Point

Gamma
Correc-
tion

Lumi-
nance
E’Y

Quantization

Red Green Blue Y’ Cb, Cr
V4L2_COLORSPACE_470_SYSTEM_M5 M/NTSCc

accord-
ing to
ITU470>,
ITU601>

x = 0.67,
y = 0.33

x = 0.21,
y = 0.71

x = 0.14,
y = 0.08 x = 0.310,

y = 0.316,
Illumi-
nant C

?
0.299 E’R

+ 0.587 E’G

+ 0.114 E’B

219 E’Y + 16224 PB,R + 128

V4L2_COLORSPACE_470_SYSTEM_BG6 625-line
PAL and
SECAM
systems
accord-
ing to
ITU470>,
ITU601>

x = 0.64,
y = 0.33

x = 0.29,
y = 0.60

x = 0.15,
y = 0.06 x = 0.313,

y = 0.329,
Illumi-
nant D65

?
0.299 E’R

+ 0.587 E’G

+ 0.114 E’B

219 E’Y + 16224 PB,R + 128

V4L2_COLORSPACE_JPEG7 JPEG
Y’CbCr,
see
JFIF>,
ITU601>

? ? ? ? ?
0.299 E’R

+ 0.587 E’G

+ 0.114 E’B

256 E’Y + 16d256 PB,R + 128

V4L2_COLORSPACE_SRGB8 [?]
x = 0.640,
y = 0.330

x = 0.300,
y = 0.600

x = 0.150,
y = 0.060

x = 0.3127,
y = 0.3290,
Illumi-
nant D65

E’ =
4.5 I for I≤0.018,
1.099 I0.45 -
0.099 for 0.018 < I

n/a

Notes: a. The coordinates of the color primaries are given in the CIE system (1931) b. The ubiquitous Bt878 video capture chip quantizes E’Y to 238 levels, yielding a range of Y’ = 16 . . . 253, unlike Rec. 601 Y’ = 16 . . . 235. This is not a typo in the Bt878 documentation, it has been implemented in silicon. The chroma extents are unclear. c. No identifier exists for M/PAL which uses the chromaticities of M/NTSC, the remaining parameters are equal to B and G/PAL. d. Note JFIF quantizes Y’PBPR in range [0;+1] and [-0.5;+0.5] to 257 levels, however Y’CbCr signals are still clamped to [0;255].

2.3. RGB Formats
These formats are designed to match the pixel formats of typical PC graphics frame buffers. They
occupy 8, 16, 24 or 32 bits per pixel. These are all packed-pixel formats, meaning all the data for a
pixel lie next to each other in memory.

When one of these formats is used, drivers shall report the colorspace V4L2_COLORSPACE_SRGB.

Table 2-3. Packed RGB Image Formats

IdentifierCode Byte 0 Byte 1 Byte 2 Byte 3

Bit
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

25

Chapter 2. Image Formats

IdentifierCode Byte 0 Byte 1 Byte 2 Byte 3

Bit
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB332

’RGB1’
b1 b0 g2 g1 g0 r2 r1 r0

V4L2_PIX_FMT_RGB555

’RGBO’
g2 g1 g0 r4 r3 r2 r1 r0 ? b4 b3 b2 b1 b0 g4 g3

V4L2_PIX_FMT_RGB565

’RGBP’
g2 g1 g0 r4 r3 r2 r1 r0 b4 b3 b2 b1 b0 g5 g4 g3

V4L2_PIX_FMT_RGB555X

’RGBQ’
? b4 b3 b2 b1 b0 g4 g3 g2 g1 g0 r4 r3 r2 r1 r0

V4L2_PIX_FMT_RGB565X

’RGBR’
b4 b3 b2 b1 b0 g5 g4 g3 g2 g1 g0 r4 r3 r2 r1 r0

V4L2_PIX_FMT_BGR24

’BGR3’
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

V4L2_PIX_FMT_RGB24

’RGB3’
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

V4L2_PIX_FMT_BGR32

’BGR4’
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 ? ? ? ? ? ? ? ?

V4L2_PIX_FMT_RGB32

’RGB4’
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0 ? ? ? ? ? ? ? ?

Bit 7 is the most significant bit. ? = undefined bit, ignored on output, random value on input.

Example 2-2. V4L2_PIX_FMT_BGR24 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: B00 G00 R00 B01 G01 R01 B02 G02 R02 B03 G03 R03

start + 12: B10 G10 R10 B11 G11 R11 B12 G12 R12 B13 G13 R13

start + 24: B20 G20 R20 B21 G21 R21 B22 G22 R22 B23 G23 R23

start + 36: B30 G30 R30 B31 G31 R31 B32 G32 R32 B33 G33 R33

Important: Drivers may interpret these formats differently.

The V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_RGB565, V4L2_PIX_FMT_RGB555X and
V4L2_PIX_FMT_RGB565X formats are uncommon. Video and display hardware typically supports

26

variants with reversed order of color components, i. e. blue towards the least, red towards the
most significant bit. Although presumably the original authors had the common formats in mind,
the definitions were always very clear and cannot be simply regarded as erroneous.

If V4L2_PIX_FMT_RGB332 has been chosen in accordance with the 15 and 16 bit formats, this
format might as well be interpreted differently, as "rrrgggbb" rather than "bbgggrrr".

Finally some drivers, most prominently the BTTV driver, might interpret V4L2_PIX_FMT_RGB32 as
the big-endian variant of V4L2_PIX_FMT_BGR32, consisting of bytes "?RGB" in memory. V4L2
never defined such a format, lack of a X suffix to the symbol suggests it was intended this way,
and a new symbol and four character code should have been used instead.

Until these issues are solved, application writers are advised that drivers might interpret these
formats either way.

2.4. YUV Formats
YUV is the format native to TV broadcast and composite video signals. It separates the brightness
information (Y) from the color information (U and V or Cb and Cr). The color information consists
of red and blue color difference signals, this way the green component can be reconstructed by
subtracting from the brightness component. See Section 2.2> for conversion examples. YUV was
chosen because early television would only transmit brightness information. To add color in a way
compatible with existing receivers a new signal carrier was added to transmit the color difference
signals. Secondary in the YUV format the U and V components usually have lower resolution than
the Y component. This is an analog video compression technique taking advantage of a property of
the human visual system, being more sensitive to brightness information.

V4L2_PIX_FMT_GREY (’GREY’)

Name
V4L2_PIX_FMT_GREY — Grey-scale image.

Description
This is a grey-scale image. It is really a degenerate Y’CbCr format which simply contains no Cb or
Cr data.

Example 2-1. V4L2_PIX_FMT_GREY 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

27

V4L2_PIX_FMT_YUYV (’YUYV’)

Name
V4L2_PIX_FMT_YUYV — Packed format with ½ horizontal chroma resolution, also known as YUV
4:2:2.

Description
In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes
to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb
components have half the horizontal resolution of the Y component. V4L2_PIX_FMT_YUYV is
known in the Windows environment as YUY2.

Example 2-1. V4L2_PIX_FMT_YUYV 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Cb00 Y’01 Cr00 Y’02 Cb01 Y’03 Cr01

start + 8: Y’10 Cb10 Y’11 Cr10 Y’12 Cb11 Y’13 Cr11

start + 16: Y’20 Cb20 Y’21 Cr20 Y’22 Cb21 Y’23 Cr21

start + 24: Y’30 Cb30 Y’31 Cr30 Y’32 Cb31 Y’33 Cr31

Color Sample Location.

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

28

V4L2_PIX_FMT_UYVY (’UYVY’)

Name
V4L2_PIX_FMT_UYVY — Variation of V4L2_PIX_FMT_YUYV with different order of samples in
memory.

Description
In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes
to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb
components have half the horizontal resolution of the Y component.

Example 2-1. V4L2_PIX_FMT_UYVY 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03

start + 8: Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13

start + 16: Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23

start + 24: Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33

Color Sample Location.

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

29

V4L2_PIX_FMT_Y41P (’Y41P’)

Name
V4L2_PIX_FMT_Y41P — Packed format with ¼ horizontal chroma resolution, also known as YUV
4:1:1.

Description
In this format each 12 bytes is eight pixels. In the twelve bytes are two CbCr pairs and eight Y’s. The
first CbCr pair goes with the first four Y’s, and the second CbCr pair goes with the other four Y’s.
The Cb and Cr components have one fourth the horizontal resolution of the Y component.

Do not confuse this format with V4L2_PIX_FMT_YUV411P. Y41P is derived from "YUV 4:1:1
packed", possibly in reference to a Windows FOURCC, while YUV411P stands for "YUV 4:1:1
planar".

Example 2-1. V4L2_PIX_FMT_Y41P 8 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03 Y’04 Y’05 Y’06 Y’07

start + 12: Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13 Y’14 Y’15 Y’16 Y’17

start + 24: Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23 Y’24 Y’25 Y’26 Y’27

start + 36: Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33 Y’34 Y’35 Y’36 Y’37

Color Sample Location.

0 1 2 3 4 5 6 7
0 Y Y C Y Y Y Y C Y Y
1 Y Y C Y Y Y Y C Y Y
2 Y Y C Y Y Y Y C Y Y
3 Y Y C Y Y Y Y C Y Y

30

V4L2_PIX_FMT_YVU420 (’YV12’),
V4L2_PIX_FMT_YUV420 (’YU12’)

Name
V4L2_PIX_FMT_YVU420, V4L2_PIX_FMT_YUV420 — Planar formats with ½ horizontal and
vertical chroma resolution, also known as YUV 4:2:0.

Description
These are planar formats, as opposed to a packed format. The three components are separated into
three sub- images or planes. The Y plane is first. The Y plane has one byte per pixel. For
V4L2_PIX_FMT_YVU420, the Cr plane immediately follows the Y plane in memory. The Cr plane is
half the width and half the height of the Y plane (and of the image). Each Cr belongs to four pixels, a
two-by-two square of the image. For example, Cr

0
belongs to Y’

00
, Y’

01
, Y’

10
, and Y’

11
. Following

the Cr plane is the Cb plane, just like the Cr plane. V4L2_PIX_FMT_YUV420 is the same except the
Cb plane comes first, then the Cr plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes
after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row
(including padding).

Example 2-1. V4L2_PIX_FMT_YVU420 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

start + 16: Cr00 Cr01

start + 18: Cr10 Cr11

start + 20: Cb00 Cb01

start + 22: Cb10 Cb11

Color Sample Location.

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

31

V4L2_PIX_FMT_YVU410 (’YVU9’),
V4L2_PIX_FMT_YUV410 (’YUV9’)

Name
V4L2_PIX_FMT_YVU410, V4L2_PIX_FMT_YUV410 — Planar formats with ¼ horizontal and
vertical chroma resolution, also known as YUV 4:1:0.

Description
These are planar formats, as opposed to a packed format. The three components are separated into
three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For
V4L2_PIX_FMT_YVU410, the Cr plane immediately follows the Y plane in memory. The Cr plane is
¼ the width and ¼ the height of the Y plane (and of the image). Each Cr belongs to 16 pixels, a
four-by-four square of the image. Following the Cr plane is the Cb plane, just like the Cr plane.
V4L2_PIX_FMT_YUV410 is the same, except the Cb plane comes first, then the Cr plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as many pad bytes
after their rows. In other words, four Cx rows (including padding) are exactly as long as one Y row
(including padding).

Example 2-1. V4L2_PIX_FMT_YVU410 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

start + 16: Cr00

start + 17: Cb00

Color Sample Location.

0 1 2 3
0 Y Y Y Y

1 Y Y Y Y
C

2 Y Y Y Y

3 Y Y Y Y

32

V4L2_PIX_FMT_YUV422P (’422P’)

Name
V4L2_PIX_FMT_YUV422P — Format with ½ horizontal chroma resolution, also known as YUV
4:2:2. Planar layout as opposed to V4L2_PIX_FMT_YUYV.

Description
This format is not commonly used. This is a planar version of the YUYV format. The three
components are separated into three sub-images or planes. The Y plane is first. The Y plane has one
byte per pixel. The Cb plane immediately follows the Y plane in memory. The Cb plane is half the
width of the Y plane (and of the image). Each Cb belongs to two pixels. For example, Cb

0
belongs to

Y’
00

, Y’
01

. Following the Cb plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes
after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row
(including padding).

Example 2-1. V4L2_PIX_FMT_YUV422P 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

start + 16: Cb00 Cb01

start + 18: Cb10 Cb11

start + 20: Cb20 Cb21

start + 22: Cb30 Cb31

start + 24: Cr00 Cr01

start + 26: Cr10 Cr11

start + 28: Cr20 Cr21

start + 30: Cr30 Cr31

Color Sample Location.

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

33

V4L2_PIX_FMT_YUV411P (’411P’)

Name
V4L2_PIX_FMT_YUV411P — Format with ¼ horizontal chroma resolution, also known as YUV
4:1:1. Planar layout as opposed to V4L2_PIX_FMT_Y41P.

Description
This format is not commonly used. This is a planar format similar to the 4:2:2 planar format except
with half as many chroma. The three components are separated into three sub-images or planes. The
Y plane is first. The Y plane has one byte per pixel. The Cb plane immediately follows the Y plane
in memory. The Cb plane is ¼ the width of the Y plane (and of the image). Each Cb belongs to 4
pixels all on the same row. For example, Cb

0
belongs to Y’

00
, Y’

01
, Y’

02
and Y’

03
. Following the Cb

plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as many pad bytes
after their rows. In other words, four C x rows (including padding) is exactly as long as one Y row
(including padding).

Example 2-1. V4L2_PIX_FMT_YUV411P 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

start + 16: Cb00

start + 17: Cb10

start + 18: Cb20

start + 19: Cb30

start + 20: Cr00

start + 21: Cr10

start + 22: Cr20

start + 23: Cr30

Color Sample Location.

0 1 2 3
0 Y Y C Y Y
1 Y Y C Y Y
2 Y Y C Y Y
3 Y Y C Y Y

34

V4L2_PIX_FMT_NV12 (’NV12’), V4L2_PIX_FMT_NV21
(’NV21’)

Name
V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_NV21 — Formats with ½ horizontal and vertical chroma
resolution, also known as YUV 4:2:0. One luminance and one chrominance plane with alternating
chroma samples as opposed to V4L2_PIX_FMT_YVU420.

Description
These are two-plane versions of the YUV 4:2:0 format. The three components are separated into two
sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For
V4L2_PIX_FMT_NV12, a combined CbCr plane immediately follows the Y plane in memory. The
CbCr plane is the same width, in bytes, as the Y plane (and of the image), but is half as tall in pixels.
Each CbCr pair belongs to four pixels. For example, Cb

0
/Cr

0
belongs to Y’

00
, Y’

01
, Y’

10
, Y’

11
.

V4L2_PIX_FMT_NV21 is the same except the Cb and Cr bytes are swapped, the CrCb plane starts
with a Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.

Example 2-1. V4L2_PIX_FMT_NV12 4 × 4 pixel image

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03

start + 4: Y’10 Y’11 Y’12 Y’13

start + 8: Y’20 Y’21 Y’22 Y’23

start + 12: Y’30 Y’31 Y’32 Y’33

start + 16: Cb00 Cr00 Cb01 Cr01

start + 20: Cb10 Cr10 Cb11 Cr11

Color Sample Location.

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

35

Chapter 2. Image Formats

2.5. Compressed Formats
[to do, see also VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP, VIDIOC_G_JPEGCOMP,
VIDIOC_S_JPEGCOMP. The only compressed standard format should be [M]JPEG.]

2.6. Reserved Format Identifiers
These formats are not defined by this specification, they are just listed for reference and to avoid
naming conflicts. If you want to register your own format, send an e-mail to the V4L mailing list
https://listman.redhat.com/mailman/listinfo/video4linux-list for inclusion in the videodev.h file. If
you want to share your format with other developers add a link to your documentation and send a
copy to the maintainer of this document, Michael Schimek <mschimek@gmx.at>, for inclusion in
this section. If you think your format should be listed in a standard format section please make a
proposal on the V4L mailing list.

Table 2-4. Reserved Image Formats

Identifier Code Details
V4L2_PIX_FMT_YYUV ’YYUV’ unknown

V4L2_PIX_FMT_HI240 ’HI24’ Used by the BTTV driver, http://bytesex.org/bttv/

V4L2_PIX_FMT_MJPEG ’MJPG’ Used by the Zoran driver

V4L2_PIX_FMT_JPEG ’JPEG’ unknown [?]

V4L2_PIX_FMT_DV ’dvsd’ unknown

V4L2_PIX_FMT_MPEG ’MPEG’ unknown

V4L2_PIX_FMT_WNVA ’WNVA’ Used by the Winnov Videum driver,
http://www.thedirks.org/winnov/

36

Chapter 3. Input/Output
The V4L2 API defines several different methods to read from or write to a device. All drivers
exchanging data with applications must support at least one of them.

The classic I/O method using the read() and write() function is automatically selected after
opening a V4L2 device. When the driver does not support this method attempts to read or write will
fail at any time.

Other methods must be negotiated. To select the streaming I/O method with memory mapped or user
buffers applications call the VIDIOC_REQBUFS ioctl. The asynchronous I/O method is not defined
yet.

Video overlay can be considered another I/O method, although the application does not directly
receive the image data. It is selected by initiating video overlay with the VIDIOC_S_FMT ioctl. For
more information see Section 4.2>.

Generally exactly one I/O method, including overlay, is associated with each file descriptor. The only
exceptions are applications not exchanging data with a driver ("panel applications", see Section
1.1>) and drivers permitting simultaneous video capturing and overlay using the same file descriptor,
for compatibility with V4L and earlier versions of V4L2.

VIDIOC_S_FMT and VIDIOC_REQBUFS would permit this to some degree, but for simplicity drivers
need not support switching the I/O method (after first switching away from read/write) other than by
closing and reopening the device.

The following sections describe the various I/O methods in more detail.

3.1. Read/Write
Input and output devices support the read() and write() function, respectively, when the
V4L2_CAP_READWRITE flag in the capabilities field of struct v4l2_capability returned by the
VIDIOC_QUERYCAP ioctl is set.

Drivers may need the CPU to copy the data, but they may also support DMA to or from user
memory, so this I/O method is not necessarily less efficient than other methods merely exchanging
buffer pointers. It is considered inferior though because no meta-information like frame counters or
timestamps are passed. This information is necessary to recognize frame dropping and to
synchronize with other data streams. However this is also the simplest I/O method, requiring little or
no setup to exchange data. It permits command line stunts like this (the vidctrl tool is fictitious):

> vidctrl /dev/video --input=0 --format=YUYV --size=352x288
> dd if=/dev/video of=myimage.422 bs=202752 count=1

To read from the device applications use the read() function, to write the write() function.
Drivers must implement one I/O method if they exchange data with applications, but it need not be
this.1 When reading or writing is supported, the driver must also support the select() and poll()

function.2

3.2. Streaming I/O (Memory Mapping)
Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl is set. There

37

Chapter 3. Input/Output

are two streaming methods, to determine if the memory mapping flavor is supported applications
must call the VIDIOC_REQBUFS ioctl.

Streaming is an I/O method where only pointers to buffers are exchanged between application and
driver, the data itself is not copied. Memory mapping is primarily intended to map buffers in device
memory into the application’s address space. Device memory can be for example the video memory
on a graphics card with a video capture add-on. However, being the most efficient I/O method
available for a long time, many other drivers support streaming as well, allocating buffers in
DMA-able main memory.

A driver can support many sets of buffers. Each set is identified by a unique buffer type value. The
sets are independent and each set can hold a different type of data. To access different sets at the
same time different file descriptors must be used.3

To allocate device buffers applications call the VIDIOC_REQBUFS ioctl with the desired number of
buffers and buffer type, for example V4L2_BUF_TYPE_VIDEO_CAPTURE. This ioctl can also be used
to change the number of buffers or to free the allocated memory, provided none of the buffers are
still mapped.

Before applications can access the buffers they must map them into their address space with the
mmap() function. The location of the buffers in device memory can be determined with the
VIDIOC_QUERYBUF ioctl. The m.offset and length returned in a struct v4l2_buffer are passed as
sixth and second parameter to the mmap() function. The offset and length values must not be
modified. Remember the buffers are allocated in physical memory, as opposed to virtual memory
which can be swapped out to disk. Applications should free the buffers as soon as possible with the
munmap() function.

Example 3-1. Mapping buffers

struct v4l2_requestbuffers reqbuf;
struct {

void *start;
size_t length;

} *buffers;
unsigned int i;

memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (-1 == ioctl (fd, VIDIOC_REQBUFS, &reqbuf)) {
if (errno == EINVAL)

printf ("Video capturing or mmap-streaming is not supported\n");
else

perror ("VIDIOC_REQBUFS");

exit (EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf ("Not enough buffer memory\n");
exit (EXIT_FAILURE);

}

38

Chapter 3. Input/Output

buffers = calloc (reqbuf.count, sizeof (*buffers));
assert (buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;

memset (&buffer, 0, sizeof (buffer));
buffer.type = reqbuf.type;

buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buffer)) {
perror ("VIDIOC_QUERYBUF");
exit (EXIT_FAILURE);

}

buffers[i].length = buffer.length; /* remember for munmap() */

buffers[i].start = mmap (NULL, buffer.length,
PROT_READ | PROT_WRITE, /* required */
MAP_SHARED, /* recommended */
fd, buffer.m.offset);

if (buffers[i].start == MAP_FAILED) {
/* You may need to unmap and free the so far

mapped buffers here. */
perror ("mmap");
exit (EXIT_FAILURE);

}
}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
munmap (buffers[i].start, buffers[i].length);

Streaming drivers maintain two buffer queues, an incoming and an outgoing queue. They separate
the synchronous capture or output operation locked to a video clock from the application which is
subject to random disk or network delays and preemption by other processes, thereby reducing the
probability of data loss. The queues are organized as FIFOs, buffers will be output in the order
enqueued in the incoming FIFO, and were captured in the order dequeued from the outgoing FIFO.

The driver may require a minimum number of buffers enqueued at all times to function, apart of this
no limit exists on the number of buffers applications can enqueue in advance, or dequeue and
process. They can also enqueue in a different order than buffers have been dequeued, and the driver
can fill enqueued empty buffers in any order. 4 The index number of a buffer (struct v4l2_buffer
index) plays no role here, it only identifies the buffer.

Initially all mapped buffers are in dequeued state, inaccessible by the driver. For capturing
applications it is customary to first enqueue all mapped buffers, then to start capturing and enter the
read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues the
buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough
buffers are stacked up the output is started with VIDIOC_STREAMON. In the write loop, when the
application runs out of free buffers, it must wait until an empty buffer can be dequeued and reused.

39

Chapter 3. Input/Output

To enqueue and dequeue a buffer applications use the VIDIOC_QBUF and VIDIOC_DQBUF ioctl. The
status of a buffer being mapped, enqueued, full or empty can be determined at any time using the
VIDIOC_QUERYBUF ioctl. Two methods exist to suspend execution of the application until one or
more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing
queue. When the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns
immediately with an EAGAIN error code when no buffer is available. The select() or poll()
function are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON and
VIDIOC_STREAMOFF ioctl. Note VIDIOC_STREAMOFF removes all buffers from both queues as a
side effect. Since there is no notion of doing anything "now" on a multitasking system, if an
application needs to synchronize with another event it should examine the struct v4l2_buffer
timestamp of captured buffers, or set the field before enqueuing buffers for output.

Drivers implementing memory mapping I/O must support the VIDIOC_REQBUFS,
VIDIOC_QUERYBUF, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and
VIDIOC_STREAMOFF ioctl, the mmap(), munmap(), select() and poll() function.5

[capture example]

3.3. Streaming I/O (User Pointers)
Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl is set. If the
particular user pointer method (not only memory mapping) is supported must be determined by
calling the VIDIOC_REQBUFS ioctl.

This I/O method combines advantages of the read/write and memory mapping methods. Buffers are
allocated by the application itself, and can reside for example in virtual or shared memory. Only
pointers to data are exchanged, these pointers and meta-information are passed in struct v4l2_buffer.
The driver must be switched into user pointer I/O mode by calling the VIDIOC_REQBUFS with the
desired buffer type. No buffers are allocated beforehands, consequently they are not indexed and
cannot be queried like mapped buffers with the VIDIOC_QUERYBUF ioctl.

Example 3-2. Initiating streaming I/O with user pointers

struct v4l2_requestbuffers reqbuf;

memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_USERPTR;

if (ioctl (fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf ("Video capturing or user pointer streaming is not supported\n");
else

perror ("VIDIOC_REQBUFS");

exit (EXIT_FAILURE);
}

Buffer addresses and sizes are passed on the fly with the VIDIOC_QBUF ioctl. Although buffers are
commonly cycled, applications can pass different addresses and sizes at each VIDIOC_QBUF call. If

40

Chapter 3. Input/Output

required by the hardware the driver swaps memory pages within physical memory to create a
continuous area of memory. This happens transparently to the application in the virtual memory
subsystem of the kernel. When buffer pages have been swapped out to disk they are brought back
and finally locked in physical memory for DMA.6

Filled or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock the
memory pages at any time between the completion of the DMA and this ioctl. The memory is also
unlocked when VIDIOC_STREAMOFF is called, VIDIOC_REQBUFS, or when the device is closed.
Applications must take care not to free buffers without dequeuing. For once, the buffers remain
locked until further, wasting physical memory. Second the driver will not be notified when the
memory is returned to the application’s free list and subsequently reused for other purposes, possibly
completing the requested DMA and overwriting valuable data.

For capturing applications it is customary to enqueue a number of empty buffers, to start capturing
and enter the read loop. Here the application waits until a filled buffer can be dequeued, and
re-enqueues the buffer when the data is no longer needed. Output applications fill and enqueue
buffers, when enough buffers are stacked up output is started. In the write loop, when the application
runs out of free buffers it must wait until an empty buffer can be dequeued and reused. Two methods
exist to suspend execution of the application until one or more buffers can be dequeued. By default
VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK flag was
given to the open() function, VIDIOC_DQBUF returns immediately with an EAGAIN error code
when no buffer is available. The select() or poll() function are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON and
VIDIOC_STREAMOFF ioctl. Note VIDIOC_STREAMOFF removes all buffers from both queues and
unlocks all buffers as a side effect. Since there is no notion of doing anything "now" on a
multitasking system, if an application needs to synchronize with another event it should examine the
struct v4l2_buffer timestamp of captured buffers, or set the field before enqueuing buffers for
output.

Drivers implementing user pointer I/O must support the VIDIOC_REQBUFS, VIDIOC_QBUF,
VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl, the select() and poll()

function.7

3.4. Asynchronous I/O
This method is not defined yet.

3.5. Buffers
A buffer contains data exchanged by application and driver using one of the Streaming I/O methods.
Only pointers to buffers are exchanged, the data itself is not copied. These pointers, together with
meta-information like timestamps or field parity, are stored in a struct v4l2_buffer, argument to the
VIDIOC_QUERYBUF, VIDIOC_QBUF and VIDIOC_DQBUF ioctl.

Nominally timestamps refer to the first data byte transmitted. In practice however the wide range of
hardware covered by the V4L2 API limits timestamp accuracy. Often an interrupt routine will sample
the system clock shortly after the field or frame was stored completely in memory. So applications
must expect a constant difference up to one field or frame period plus a small (few scan lines)
random error. The delay and error can be much larger due to compression or transmission over an
external bus when the frames are not properly stamped by the sender. This is frequently the case with

41

Chapter 3. Input/Output

USB cameras. Here timestamps refer to the instant the field or frame was received by the driver, not
the capture time. These devices identify by not enumerating any video standards, see Section 1.7>.

Similar limitations apply to output timestamps. Typically the video hardware locks to a clock
controlling the video timing, the horizontal and vertical synchronization pulses. At some point in the
line sequence, possibly the vertical blanking, an interrupt routine samples the system clock,
compares against the timestamp and programs the hardware to repeat the previous field or frame, or
to display the buffer contents.

Apart of limitations of the video device and natural inaccuracies of all clocks, it should be noted
system time itself is not perfectly stable. It can be affected by power saving cycles, warped to insert
leap seconds, or even turned back or forth by the system administrator affecting long term
measurements. 8

Table 3-1. struct v4l2_buffer

__u32 index Number of the buffer, set by the
application. This field is only used for
memory mapping I/O and can range
from zero to the number of buffers
allocated with the VIDIOC_REQBUFS
ioctl (struct v4l2_requestbuffers count)
minus one.

enum v4l2_buf_typetype Type of the buffer, same as
struct v4l2_format type or
struct v4l2_requestbuffers type, set by
the application.

__u32 bytesused The number of bytes occupied by the
data in the buffer. It depends on the
negotiated data format and may change
with each buffer for compressed
variable size data like JPEG images.
Drivers must set this field when type

refers to an input stream, applications
when an output stream.

__u32 flags Flags set by the application or driver,
see Table 3-3>.

enum v4l2_field field Indicates the field order of the image in
the buffer, see Table 3-8>. This field is
not used when the buffer contains VBI
data. Drivers must set it when type

refers to an input stream, applications
when an output stream.

42

Chapter 3. Input/Output

struct timeval timestamp For input streams this is the system time
(as returned by the gettimeofday()
function) when the first data byte was
captured. For output streams the data
will not be displayed before this time,
secondary to the nominal frame rate
determined by the current video
standard in enqueued order.
Applications can for example zero this
field to display frames as soon as
possible. The driver stores the time at
which the first data byte was actually
sent out in the timestamp field. This
permits applications to monitor the drift
between the video and system clock.

struct v4l2_timecodetimecode When type is
V4L2_BUF_TYPE_VIDEO_CAPTURE

and the V4L2_BUF_FLAG_TIMECODE
flag is set in flags, this structure
contains a frame timecode. In
V4L2_FIELD_ALTERNATE mode the
top and bottom field contain the same
timecode. Timecodes are intended to
help video editing and are typically
recorded on video tapes, but also
embedded in compressed formats like
MPEG. This field is independent of the
timestamp and sequence fields.

__u32 sequence Set by the driver, counting the frames in
the sequence.

In V4L2_FIELD_ALTERNATE mode the top and bottom field have the same sequence number. The count starts at zero and includes dropped or repeated frames. A dropped frame was received by an input device but could not be stored due to lack of free buffer space. A repeated frame was displayed again by an output device because the application did not pass new data in time. Note this may count the frames received e.g. over USB, without taking into account the frames dropped by the remote hardware due to limited compression throughput or bus bandwidth. These devices identify by not enumerating any video standards, see Section 1.7>.

enum v4l2_memorymemory This field must be set by applications
and/or drivers in accordance with the
selected I/O method.

union m

__u32 offset When memory is V4L2_MEMORY_MMAP
this is the offset of the buffer from the
start of the device memory. The value is
returned by the driver and apart of
serving as parameter to the mmap()
function not useful for applications. See
Section 3.2> for details.

unsigned long userptr When memory is
V4L2_MEMORY_USERPTR this is a
pointer to the buffer (casted to unsigned
long type) in virtual memory, set by the
application. See Section 3.3> for
details.

43

Chapter 3. Input/Output

__u32 length Size of the buffer (not the payload) in
bytes.

__u32 input Some video capture drivers support
rapid and synchronous video input
changes, a function useful for example
in video surveillance applications. For
this purpose applications set the
V4L2_BUF_FLAG_INPUT flag, and this
field to the number of a video input as
in struct v4l2_input field index.

__u32 reserved A place holder for future extensions and
custom (driver defined) buffer types
V4L2_BUF_TYPE_PRIVATE and higher.

Table 3-2. enum v4l2_buf_type

V4L2_BUF_TYPE_VIDEO_CAPTURE 1 Buffer of a video capture stream, see Section
4.1>.

V4L2_BUF_TYPE_VIDEO_OUTPUT 2 Buffer of a video output stream, see Section 4.3>.

V4L2_BUF_TYPE_VIDEO_OVERLAY 3 Buffer for video overlay, see Section 4.2>.

V4L2_BUF_TYPE_VBI_CAPTURE 4 Buffer of a raw VBI capture stream, see Section
4.6>.

V4L2_BUF_TYPE_VBI_OUTPUT 5 Buffer of a raw VBI output stream, see Section
4.6>.

V4L2_BUF_TYPE_PRIVATE 0x80 This and higher values are reserved for custom
(driver defined) buffer types.

Table 3-3. Buffer Flags

V4L2_BUF_FLAG_MAPPED 0x0001 The buffer resides in device memory and has been
mapped into the application’s address space, see
Section 3.2> for details. Drivers set or clear this
flag when the VIDIOC_QUERYBUF,
VIDIOC_QBUF or VIDIOC_DQBUF ioctl is
called. Set by the driver.

V4L2_BUF_FLAG_QUEUED 0x0002 Internally drivers maintain two buffer queues, an
incoming and outgoing queue. When this flag is
set, the buffer is currently on the incoming queue.
It automatically moves to the outgoing queue after
the buffer has been filled (capture devices) or
displayed (output devices). Drivers set or clear
this flag when the VIDIOC_QUERYBUF ioctl is
called. After (successful) calling the
VIDIOC_QBUF ioctl it is always set and after
VIDIOC_DQBUF always cleared.

44

Chapter 3. Input/Output

V4L2_BUF_FLAG_DONE 0x0004 When this flag is set, the buffer is currently on the
outgoing queue, ready to be dequeued from the
driver. Drivers set or clear this flag when the
VIDIOC_QUERYBUF ioctl is called. After calling
the VIDIOC_QBUF or VIDIOC_DQBUF it is always
cleared. Of course a buffer cannot be on both
queues at the same time, the
V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flag are mutually
exclusive. They can be both cleared however, then
the buffer is in "dequeued" state, in the application
domain to say so.

V4L2_BUF_FLAG_KEYFRAME 0x0008 Drivers set or clear this flag when calling the
VIDIOC_DQBUF ioctl. It may be set by video
capture devices when the buffer contains a
compressed image which is a key frame (or field),
i.e. can be decompressed on its own.

V4L2_BUF_FLAG_PFRAME 0x0010 Similar to V4L2_BUF_FLAG_KEYFRAME this flags
predicted frames or fields which contain only
differences to a previous key frame.

V4L2_BUF_FLAG_BFRAME 0x0020 Similar to V4L2_BUF_FLAG_PFRAME this is a
bidirectional predicted frame or field. [ooc tbd]

V4L2_BUF_FLAG_TIMECODE 0x0100 The timecode field is valid. Drivers set or clear
this flag when the VIDIOC_DQBUF ioctl is called.

V4L2_BUF_FLAG_INPUT 0x0200 The input field is valid. Applications set or clear
this flag before calling the VIDIOC_QBUF ioctl.

Table 3-4. enum v4l2_memory

V4L2_MEMORY_MMAP 1 The buffer is used for memory mapping I/O.

V4L2_MEMORY_USERPTR 2 The buffer is used for user pointer I/O.

V4L2_MEMORY_OVERLAY 3 [to do]

3.5.1. Timecodes
The v4l2_timecode structure is designed to hold a SMPTE12M> or similar timecode. (struct timeval
timestamps are stored in struct v4l2_buffer field timestamp.)

Table 3-5. struct v4l2_timecode

__u32 type Frame rate the timecodes are based on, see Table
3-6>.

__u32 flags Timecode flags, see Table 3-7>.

__u8 frames Frame count, 0 ... 23/24/29/49/59, depending on
the type of timecode.

__u8 seconds Seconds count, 0 ... 59. This is a binary, not BCD
number.

45

Chapter 3. Input/Output

__u8 minutes Minutes count, 0 ... 59. This is a binary, not BCD
number.

__u8 hours Hours count, 0 ... 29. This is a binary, not BCD
number.

__u8 userbits[4] The "user group" bits from the timecode.

Table 3-6. Timecode Types

V4L2_TC_TYPE_24FPS 1 24 frames per second, i. e. film.

V4L2_TC_TYPE_25FPS 2 25 frames per second, i.e. PAL or SECAM video.

V4L2_TC_TYPE_30FPS 3 30 frames per second, i.e. NTSC video.

V4L2_TC_TYPE_50FPS 4

V4L2_TC_TYPE_60FPS 5

Table 3-7. Timecode Flags

V4L2_TC_FLAG_DROPFRAME 0x0001 Indicates "drop frame" semantics for counting
frames in 29.97 fps material. When set, frame
numbers 0 and 1 at the start of each minute,
except minutes 0, 10, 20, 30, 40, 50 are omitted
from the count.

V4L2_TC_FLAG_COLORFRAME 0x0002 The "color frame" flag.

V4L2_TC_USERBITS_field 0x000C Field mask for the "binary group flags".

V4L2_TC_USERBITS_USERDEFINED0x0000 Unspecified format.

V4L2_TC_USERBITS_8BITCHARS 0x0008 8-bit ISO characters.

3.6. Field Order
We have to distinguish between progressive and interlaced video. Progressive video transmits all
lines of a video image sequentially. Interlaced video divides an image into two fields, containing
only the odd and even lines of the image, respectively. Alternating the so called odd and even field
are transmitted, and due to a small delay between fields a cathode ray TV displays the lines
interleaved, yielding the original frame. This curious technique was invented because at refresh rates
similar to film the image would fade out too quickly. Transmitting fields reduces the flicker without
the necessity of doubling the frame rate and with it the bandwidth required for each channel.

It is important to understand a video camera does not expose one frame at a time, merely transmitting
the frames separated into fields. The fields are in fact captured at two different instances in time. An
object on screen may well move between one field and the next. For applications analysing motion it
is of paramount importance to recognize which field of a frame is older, the temporal order.

When the driver provides or accepts images field by field rather than interleaved, it is also important
applications understand how the fields combine to frames. We distinguish between top and bottom
fields, the spatial order: The first line of the top field is the first line of an interlaced frame, the first
line of the bottom field is the second line of that frame.

46

Chapter 3. Input/Output

However because fields were captured one after the other, arguing whether a frame commences with
the top or bottom field is pointless. Any two successive top and bottom, or bottom and top fields
yield a valid frame. Only when the source was progressive to begin with, e. g. when transferring film
to video, two fields may come from the same frame, creating a natural order.

Counter to intuition the top field is not necessarily the older field. Whether the older field contains
the top or bottom lines is a convention determined by the video standard. Hence the distinction
between temporal and spatial order of fields. The diagrams below should make this clearer.

All video capture and output devices must report the current field order. Some drivers may permit the
selection of a different order, to this end applications initialize the field field of
struct v4l2_pix_format before calling the VIDIOC_S_FMT ioctl. If this is not desired it should have
the value V4L2_FIELD_ANY (0).

Table 3-8. enum v4l2_field

V4L2_FIELD_ANY 0 Applications request this field order when any one
of the V4L2_FIELD_NONE, V4L2_FIELD_TOP,
V4L2_FIELD_BOTTOM, or
V4L2_FIELD_INTERLACED formats is
acceptable. Drivers choose depending on
hardware capabilities or e. g. the requested image
size, and return the actual field order.
struct v4l2_buffer field can never be
V4L2_FIELD_ANY.

V4L2_FIELD_NONE 1 Images are in progressive format, not interlaced.
The driver may also indicate this order when it
cannot distinguish between V4L2_FIELD_TOP

and V4L2_FIELD_BOTTOM.

V4L2_FIELD_TOP 2 Images consist of the top field only.

V4L2_FIELD_BOTTOM 3 Images consist of the bottom field only.
Applications may wish to prevent a device from
capturing interlaced images because they will
have "comb" or "feathering" artefacts around
moving objects.

V4L2_FIELD_INTERLACED 4 Images contain both fields, interleaved line by
line. The temporal order of the fields (whether the
top or bottom field is first transmitted) depends on
the current video standard. M/NTSC transmits the
bottom field first, all other standards the top field
first.

V4L2_FIELD_SEQ_TB 5 Images contain both fields, the top field lines are
stored first in memory, immediately followed by
the bottom field lines. Fields are always stored in
temporal order, the older one first in memory.
Image sizes refer to the frame, not fields.

V4L2_FIELD_SEQ_BT 6 Images contain both fields, the bottom field lines
are stored first in memory, immediately followed
by the top field lines. Fields are always stored in
temporal order, the older one first in memory.
Image sizes refer to the frame, not fields.

47

Chapter 3. Input/Output

V4L2_FIELD_ALTERNATE 7 The two fields of a frame are passed in separate
buffers, in temporal order, i. e. the older one first.
To indicate the field parity (whether the current
field is a top or bottom field) the driver or
application, depending on data direction, must set
struct v4l2_buffer field to V4L2_FIELD_TOP or
V4L2_FIELD_BOTTOM. Any two successive fields
pair to build a frame. If fields are successive,
without any dropped fields between them (fields
can drop individually), can be determined from
the struct v4l2_buffer sequence field. Image
sizes refer to the frame, not fields. This format
cannot be selected when using the read/write I/O
method.

Figure 3-1. Field Order, Top Field First Transmitted

V4L2_FIELD_TOP

V4L2_FIELD_BOTTOM

Temporal order, top field first transmitted

V4L2_FIELD_INTERLACED

V4L2_FIELD_SEQ_TB

V4L2_FIELD_ALTERNATE

v4l2_buffer.field:
V4L2_FIELD_TOP V4L2_FIELD_BOTTOM V4L2_FIELD_TOP V4L2_FIELD_BOTTOM V4L2_FIELD_TOP V4L2_FIELD_BOTTOM

48

Chapter 3. Input/Output

Figure 3-2. Field Order, Bottom Field First Transmitted

V4L2_FIELD_TOP

V4L2_FIELD_BOTTOM

Temporal order, bottom field first transmitted

V4L2_FIELD_ALTERNATE

v4l2_buffer.field:
V4L2_FIELD_TOP V4L2_FIELD_BOTTOM V4L2_FIELD_TOP V4L2_FIELD_BOTTOM V4L2_FIELD_TOPV4L2_FIELD_BOTTOM

V4L2_FIELD_INTERLACED

V4L2_FIELD_SEQ_BT

Notes
1. It would be desirable if applications could depend on drivers supporting all I/O interfaces, but as

much as the complex memory mapping I/O can be inadequate for some devices we have no
reason to require this interface, which is most useful for simple applications capturing still
images.

2. At the driver level select() and poll() are the same, and select() is too important to be
optional.

3. One could use one file descriptor and set the buffer type field accordingly when calling
VIDIOC_QBUF etc., but it makes the select() function ambiguous. We also like the clean
approach of one file descriptor per logical stream. Video overlay for example is also a logical
stream, although the CPU is not needed for continuous operation.

4. Random enqueue order permits applications processing images out of order (such as video
codecs) to return buffers earlier, reducing the probability of data loss. Random fill order allows
drivers to reuse buffers on a LIFO-basis, taking advantage of caches holding scatter-gather lists
and the like.

5. At the driver level select() and poll() are the same, and select() is too important to be
optional. The rest should be evident.

49

Chapter 3. Input/Output

6. We expect that frequently used buffers are typically not swapped out. Anyway, the process of
swapping, locking or generating scatter-gather lists may be time consuming. The delay can be
masked by the depth of the incoming buffer queue, and perhaps by maintaining caches assuming
a buffer will be soon enqueued again. On the other hand, to optimize memory usage drivers can
limit the number of buffers locked in advance and recycle the most recently used buffers first. Of
course, the pages of empty buffers in the incoming queue need not be saved to disk. Output
buffers must be saved on the incoming and outgoing queue because an application may share
them with other processes.

7. At the driver level select() and poll() are the same, and select() is too important to be
optional. The rest should be evident.

8. Since no other Linux multimedia API supports unadjusted time it would be foolish to introduce
here. We must use a universally supported clock to synchronize different media, hence time of
day.

50

Chapter 4. Device Types

4.1. Video Capture Interface
Video capture devices sample an analog video signal and store the digitized images in memory.
Today nearly all devices can capture at full 25 or 30 frames/second. With this interface applications
can control the capture process and move images from the driver into user space.

Conventionally V4L2 video capture devices are accessed through character device special files
named /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor
numbers 0 to 63. /dev/video is typically a symbolic link to the preferred video capture device.

4.1.1. Querying Capabilities
Devices supporting the video capture interface set the V4L2_CAP_VIDEO_CAPTURE flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP. As secondary
device functions they may also support the video overlay (V4L2_CAP_VIDEO_OVERLAY) and the
raw VBI capture (V4L2_CAP_VBI_CAPTURE) interface. At least one of the read/write or streaming
I/O methods must be supported. Tuners and audio inputs are optional.

4.1.2. Supplemental Functions
Video capture devices shall support audio input, tuner, controls, cropping and scaling and streaming
parameter ioctls as needed. The video input and video standard ioctls must be supported by all video
capture devices.

4.1.3. Image Format Negotiation
The result of a capture operation is determined by cropping and image format parameters. The
former select an area of the video picture to capture, the latter how images are stored in memory, i. e.
in RGB or YUV format, the number of bits per pixel or width and height. Together they also define
how images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a
device and then reading from it as if it was a plain file. Well written V4L2 applications ensure they
really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is given
in Section 1.10>.

To query the current image format applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_CAPTURE and call the VIDIOC_G_FMT ioctl with a pointer to this
structure. Drivers fill the struct v4l2_pix_format pix member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better just modify
the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure.
Drivers may adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations
without disabling I/O or possibly time consuming hardware preparations.

51

Chapter 4. Device Types

The contents of struct v4l2_pix_format are discussed in Chapter 2>. See also the specification of the
VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video capture devices
must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores
all requests and always returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is
optional.

4.1.4. Reading Images
A video capture device may support the read() function and/or streaming (memory mapping or user
pointer) I/O. See Chapter 3> for details.

4.2. Video Overlay Interface
Video overlay devices have the ability to genlock (TV-)video into the (VGA-)video signal of a
graphics card, or to store captured images directly in video memory of a graphics card, typically with
clipping. This can be considerable more efficient than capturing images and displaying them by
other means. In the old days when only nuclear power plants needed cooling towers this used to be
the only way to put live video into a window.

Video overlay devices are accessed through the same character special files as video capture devices.
Note the default function of a /dev/video device is video capturing. The overlay function is only
available after calling the VIDIOC_S_FMT ioctl.

The driver may support simultaneous overlay and capturing using the read/write and streaming I/O
methods. If so, operation at the nominal frame rate of the video standard is not guaranteed. Frames
may be directed away from overlay to capture, or one field may be used for overlay and the other for
capture if the capture parameters permit this.

Applications should use different file descriptors for capturing and overlay. This must be supported
by all drivers capable of simultaneous capturing and overlay. Optionally these drivers may also
permit capturing and overlay with a single file descriptor for compatibility with V4L and earlier
versions of V4L2.1

4.2.1. Querying Capabilities
Devices supporting the video overlay interface set the V4L2_CAP_VIDEO_OVERLAY flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP. The overlay I/O
method specified below must be supported. Tuners and audio inputs are optional.

4.2.2. Supplemental Functions
Video overlay devices shall support audio input, tuner, controls, cropping and scaling and streaming
parameter ioctls as needed. The video input and video standard ioctls must be supported by all video
overlay devices.

52

Chapter 4. Device Types

4.2.3. Setup
Before overlay can commence applications must program the driver with frame buffer parameters,
namely the address and size of the frame buffer and the image format, for example RGB 5:6:5. The
VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls are available to get and set these parameters,
respectively. The VIDIOC_S_FBUF ioctl is privileged because it allows to set up DMA into physical
memory, bypassing the memory protection mechanisms of the kernel. Only the superuser can change
the frame buffer address and size. Users are not supposed to run TV applications as root or with
SUID bit set. A small helper application with suitable privileges should query the graphics system
and program the V4L2 driver at the appropriate time.

Some devices add the video overlay to the output signal of the graphics card. In this case the frame
buffer is not modified by the video device, and the frame buffer address and pixel format are not
needed by the driver. The VIDIOC_S_FBUF ioctl is not privileged. An application can check for this
type of device by calling the VIDIOC_G_FBUF ioctl.

A driver may support any (or none) of three clipping methods:

1. Chroma-keying displays the overlaid image only where pixels in the primary graphics surface
assume a certain color.

2. A bitmap can be specified where each bit corresponds to a pixel in the overlaid image. When the
bit is set, the corresponding video pixel is displayed, otherwise a pixel of the graphics surface.

3. A list of clipping rectangles can be specified. In these regions no video is displayed, so the
graphics surface can be seen here.

When simultaneous capturing and overlay is supported and the hardware prohibits different image
and frame buffer formats, the format requested first takes precedence. The attempt to capture
(VIDIOC_S_FMT) or overlay (VIDIOC_S_FBUF) may fail with an EBUSY error code or return
accordingly modified parameters..

4.2.4. Overlay Window
The overlaid image is determined by cropping and overlay window parameters. The former select an
area of the video picture to capture, the latter how images are overlaid and clipped. Cropping
initialization at minimum requires to reset the parameters to defaults. An example is given in Section
1.10>.

The overlay window is described by a struct v4l2_window. It defines the size of the image, its
position over the graphics surface and the clipping to be applied. To get the current parameters
applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OVERLAY and
call the VIDIOC_G_FMT ioctl. The driver fills the v4l2_window substructure named win. Retrieving
a previously programmed clipping list or bitmap is not possible.

To program the overlay window applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT
ioctl. The driver adjusts the parameters against hardware limits and returns the actual parameters as
VIDIOC_G_FMT does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to learn about
driver capabilities without actually changing driver state. Unlike VIDIOC_S_FMT this also works
after the overlay has been enabled.

The scaling factor of the overlaid image is implied by the width and height given in
struct v4l2_window and the size of the cropping rectangle. For more information see Section 1.10>.

53

Chapter 4. Device Types

When simultaneous capturing and overlay is supported and the hardware prohibits different image
and window sizes, the size requested first takes precedence. The attempt to capture or overlay as well
(VIDIOC_S_FMT) may fail with an EBUSY error code or return accordingly modified parameters.

Table 4-1. struct v4l2_window

struct v4l2_rect w Size and position of the window relative to the
top, left corner of the frame buffer defined with
VIDIOC_S_FBUF. The window can extend the
frame buffer width and height, the x and y

coordinates can be negative, and it can lie
completely outside the frame buffer. The driver
clips the window accordingly, or if that is not
possible, modifies its size and/or position.

enum v4l2_field field Applications set this field to determine which
video field shall be overlaid, typically one of
V4L2_FIELD_ANY (0), V4L2_FIELD_TOP,
V4L2_FIELD_BOTTOM or
V4L2_FIELD_INTERLACED. Drivers may have to
choose a different field order and return the actual
setting here.

__u32 chromakey When chroma-keying has been negotiated with
VIDIOC_S_FBUF applications set this field to the
desired host order RGB32 value for the chroma
key. [host order? alpha channel?]

struct v4l2_clip * clips When chroma-keying has not been negotiated and
VIDIOC_G_FBUF indicated this capability,
applications can set this field to point to the first in
a list of clipping rectangles.

Like the window coordinates w , clipping rectangles are defined relative to the top, left corner of the frame buffer. However clipping rectangles must not extend the frame buffer width and height, and they must not overlap. If possible applications should merge adjacent rectangles. Whether this must create x-y or y-x bands, or the order of rectangles, is not defined. When clip lists are not supported the driver ignores this field. Its contents after calling VIDIOC_S_FMT are undefined.

__u32 clipcount When the application set the clips field, this
field must contain the number of clipping
rectangles in the list. When clip lists are not
supported the driver ignores this field, its contents
after calling VIDIOC_S_FMT are undefined. When
clip lists are supported but no clipping is desired
this field must be set to zero.

void * bitmap When chroma-keying has not been negotiated and
VIDIOC_G_FBUF indicated this capability,
applications can set this field to point to a clipping
bit mask.

It must be of the same size as the window, w.width and w.height. Each bit corresponds to a pixel in the overlaid image, which is displayed only when the bit is set. Pixel coordinates translate to bits like: ((__u8 *) bitmap)[w.width * y + x / 8] & (1 << (x & 7)) where 0 ≤ x < w.width and 0 ≤ y <w.height.a When a clipping bit mask is not supported the driver ignores this field, its contents after calling VIDIOC_S_FMT are undefined. When a bit mask is supported but no clipping is desired this field must be set to NULL. Applications need not create a clip list or bit mask. When they pass both, or despite negotiating chroma-keying, the results are undefined. Regardless of the chosen method, the clipping abilities of the hardware may be limited in quantity or quality. The results when these limits are exceeded are undefined.b

Notes: a. Should we require w.width to be a multiple of eight? b. When the image is written into frame buffer memory it will be undesirable if the driver clips out less pixels than expected, because the application and graphics system are not aware these regions need to be refreshed. The driver should clip out more pixels or not write the image at all.

Table 4-2. struct v4l2_clip2

54

Chapter 4. Device Types

struct v4l2_rect c Coordinates of the clipping rectangle, relative to
the top, left corner of the frame buffer. Only
window pixels outside all clipping rectangles are
displayed.

struct v4l2_clip * next Pointer to the next clipping rectangle in the list,
NULL when this is the last rectangle.

Table 4-3. struct v4l2_rect

__s32 left Horizontal offset of the top, left corner of the
rectangle, in pixels.

__s32 top Vertical offset of the top, left corner of the
rectangle, in pixels. Offsets increase to the right
and down.

__s32 width Width of the rectangle, in pixels.

__s32 height Height of the rectangle, in pixels. Width and
height cannot be negative, the fields are signed for
hysterical reasons.

4.2.5. Enabling Overlay
To start or stop the frame buffer overlay applications call the VIDIOC_OVERLAY ioctl.

4.3. Video Output Interface
Video output devices encode stills or image sequences as analog video signal. With this interface
applications can control the encoding process and move images from user space to the driver.

Conventionally V4L2 video output devices are accessed through character device special files named
/dev/vout and /dev/vout0 to /dev/voutN. No minor numbers were recommended yet.
/dev/vout is typically a symbolic link to the preferred video output device.

4.3.1. Querying Capabilities
Devices supporting the video output interface set the V4L2_CAP_VIDEO_OUTPUT flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP. As secondary
device functions they may also support the raw VBI output (V4L2_CAP_VBI_OUTPUT) interface. At
least one of the read/write or streaming I/O methods must be supported. Modulators and audio
outputs are optional.

4.3.2. Supplemental Functions
Video output devices shall support audio output, modulator, controls, cropping and scaling and
streaming parameter ioctls as needed. The video output and video standard ioctls must be supported
by all video output devices.

55

Chapter 4. Device Types

4.3.3. Image Format Negotiation
The output is determined by cropping and image format parameters. The former select an area of the
video picture where the image will appear, the latter how images are stored in memory, i. e. in RGB
or YUV format, the number of bits per pixel or width and height. Together they also define how
images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a
device and then writing to it as if it was a plain file. Well written V4L2 applications ensure they
really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is given
in Section 1.10>.

To query the current image format applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OUTPUT and call the VIDIOC_G_FMT ioctl with a pointer to this structure.
Drivers fill the struct v4l2_pix_format pix member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better just modify
the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure.
Drivers may adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations
without disabling I/O or possibly time consuming hardware preparations.

The contents of struct v4l2_pix_format are discussed in Chapter 2>. See also the specification of the
VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video output devices
must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores
all requests and always returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is
optional.

4.3.4. Writing Images
A video output device may support the write() function and/or streaming (memory mapping or user
pointer) I/O. See Chapter 3> for details.

4.4. Codec Interface

Suspended: This interface has been be suspended from the V4L2 API implemented in Linux
2.6 until we have more experience with codec device interfaces.

A V4L2 codec can compress, decompress, transform, or otherwise convert video data from one
format into another format, in memory. Applications send data to be converted to the driver through
the write() call, and receive the converted data through the read() call. For efficiency, a driver
may also support streaming I/O.

[to do]

56

Chapter 4. Device Types

4.5. Effect Devices Interface

Suspended: This interface has been be suspended from the V4L2 API implemented in Linux
2.6 until we have more experience with effect device interfaces.

A V4L2 video effect device can do image effects, filtering, or combine two or more images or image
streams. For example video transitions or wipes. Applications send data to be processed and receive
the result data either with read() and write() functions, or through the streaming I/O mechanism.

[to do]

4.6. Raw VBI Data Interface
VBI is an abbreviation of Vertical Blanking Interval, a gap in the sequence of lines of an analog
video signal. During VBI no picture information is transmitted, allowing some time while the
electron beam of a cathode ray tube TV returns to the top of the screen. Using an oscilloscope you
will find here the vertical synchronization pulses and short data packages ASK modulated3 onto the
video signal. These are transmissions of services such as Teletext or Closed Caption.

Subject of this interface type is raw VBI data, as sampled off a video signal, or to be added to a
signal for output. The data format is similar to uncompressed video images, a number of lines times
a number of samples per line, we call this a VBI image.

Conventionally V4L2 VBI devices are accessed through character device special files named
/dev/vbi and /dev/vbi0 to /dev/vbi15 with major number 81 and minor numbers 224 to 239.
/dev/vbi is typically a symbolic link to the preferred VBI device. This convention applies to both
input and output devices.

To address the problems of finding related video and VBI devices VBI capturing is also available as
device function under /dev/video, VBI output under /dev/vout. To capture raw VBI data from
these devices applications must call the VIDIOC_S_FMT ioctl. Accessed as /dev/vbi, raw VBI
capturing or output is the default device function.

4.6.1. Querying Capabilities
Devices supporting the raw VBI capturing or output API set the V4L2_CAP_VBI_CAPTURE or
V4L2_CAP_VBI_OUTPUT flags, respectively, in the capabilities field of struct v4l2_capability
returned by the VIDIOC_QUERYCAP. At least one of the read/write, streaming or asynchronous I/O
methods must be supported. VBI devices may or may not have a tuner or modulator.

4.6.2. Supplemental Functions
VBI devices shall support video input or output, tuner or modulator, and controls ioctls as needed.
The video standard ioctls provide information vital to program a VBI device, therefore must be
supported.

57

Chapter 4. Device Types

4.6.3. Raw VBI Format Negotiation
Raw VBI sampling abilities can vary, in particular the sampling frequency. To properly interpret the
data V4L2 specifies an ioctl to query the sampling parameters. Moreover, to allow for some
flexibility applications can also suggest different parameters.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a
device and then reading from it as if it was a plain file. Well written V4L2 applications should
always ensure they really get what they want, requesting reasonable parameters and then checking if
the actual parameters are suitable.

To query the current raw VBI capture parameters applications set the type field of a
struct v4l2_format to V4L2_BUF_TYPE_VBI_CAPTURE or V4L2_BUF_TYPE_VBI_OUTPUT, and call
the VIDIOC_G_FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_vbi_format vbi
member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_vbi_format vbi member of the fmt union, or better just modify
the results of VIDIOC-G-FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure.
Drivers return an EINVAL error code only when the given parameters are ambiguous, otherwise they
modify the parameters according to the hardware capabilites and return the actual parameters. When
the driver allocates resources at this point, it may return an EBUSY error code to indicate the
returned parameters are valid but the required resources are currently not available. That may happen
for instance when the video and VBI areas to capture would overlap, or when the driver supports
multiple opens and another process already requested VBI capturing or output. Anyway, applications
must expect other resource allocation points which may return EBUSY, at the VIDIOC_STREAMON
ioctl and the first read(), write() and select() call.

VBI devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if
VIDIOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT does.
VIDIOC_TRY_FMT is optional.

Table 4-4. struct v4l2_vbi_format

__u32 sampling_rate Samples per second, i. e. unit 1 Hz.

__u32 offset Horizontal offset of the VBI image, relative to the
leading edge of the line synchronization pulse and
counted in samples: The first sample in the VBI
image will be located offset / sampling_rate
seconds following the leading edge. See also
Figure 4-1>.

__u32 samples_per_line

__u32 sample_format Defines the sample format as in Chapter 2>, a
four-character-code.a Usually this is
V4L2_PIX_FMT_GREY, i. e. each sample consists
of 8 bits with lower values oriented towards the
black level. Do not assume any other correlation
of values with the signal level. For example, the
MSB does not necessarily indicate if the signal is
’high’ or ’low’ because 128 may not be the mean
value of the signal. Drivers shall not convert the
sample format by software.

58

Chapter 4. Device Types

__u32 start[2] This is the scanning system line number
associated with the first line of the VBI image, of
the first and the second field respectively. See
Figure 4-2> and Figure 4-3> for valid values. VBI
input drivers can return start values 0 if the
hardware cannot reliable identify scanning lines,
VBI acquisition may not require this information.

__u32 count[2] The number of lines in the first and second field
image, respectively.

Drivers should be as flexibility as possible. For example, it may be possible to extend or move the VBI capture window down to the picture area, implementing a ’full field mode’ to capture data service transmissions embedded in the picture. An application can set the first or second count value to zero if no data is required from the respective field; count[1] if the scanning system is progressive, i. e. not interlaced. The corresponding start value shall be ignored by the application and driver. Anyway, drivers may not support single field capturing and return both count values non-zero. Both count values set to zero, or line numbers outside the bounds depicted in Figure 4-2> and Figure 4-3>, or a field image covering lines of two fields, are invalid and shall not be returned by the driver. To initialize the start and count fields, applications must first determine the current video standard selection. The v4l2_std_id or the framelines field of struct v4l2_standard can be evaluated for this purpose.

__u32 flags See Table 4-5> below. Currently only drivers set
flags, applications must set this field to zero.

__u32 reserved[2] This array is reserved for future extensions.
Drivers and applications must set it to zero.

Notes: a. A few devices may be unable to sample VBI data at all but can extend the video capture window to the VBI region.

Table 4-5. Raw VBI Format Flags

V4L2_VBI_UNSYNC 0x0001 This flag indicates hardware which does not
properly distinguish between fields. Normally the
VBI image stores the first field (lower scanning
line numbers) first in memory. This may be a top
or bottom field depending on the video standard.
When this flag is set the first or second field may
be stored first, however the fields are still in
correct temporal order with the older field first in
memory.a

V4L2_VBI_INTERLACED 0x0002 By default the two field images will be passed
sequentially; all lines of the first field followed by
all lines of the second field (compare Section 3.6>
V4L2_FIELD_SEQ_TB and
V4L2_FIELD_SEQ_BT, whether the top or bottom
field is first in memory depends on the video
standard). When this flag is set, the two fields are
interlaced (cf. V4L2_FIELD_INTERLACED). The
first line of the first field followed by the first line
of the second field, then the two second lines, and
so on. Such a layout may be necessary when the
hardware has been programmed to capture or
output interlaced video images and is unable to
separate the fields for VBI capturing at the same
time. For simplicity setting this flag implies that
both count values are equal and non-zero.

Notes: a. Most VBI services transmit on both fields, but some have different semantics depending on the field number. These cannot be reliable decoded or encoded when V4L2_VBI_UNSYNC is set.

59

Chapter 4. Device Types

Figure 4-1. Line synchronization

Black Level

Sync Level

White Level

offset

Line synchr. pulse

Line blanking

60

Chapter 4. Device Types

Figure 4-2. ITU-R 525 line numbering (M/NTSC and M/PAL)

(1)

874 5 6 9 10 121132263 1262

271270267 268 269 272 273 275274266265263 264262

4 92 31 5 6 10 11 127 8

4 92 31 5 6 10 11 127 8

524

261

525

262

22

22

23

23

285

22

286

23

1st field

2nd field

61

Chapter 4. Device Types

(1) For the purpose of this specification field 2 starts in line 264 and not 263.5 because half line
capturing is not supported.

62

Chapter 4. Device Types

Figure 4-3. ITU-R 625 line numbering

1st field

1 4 5 6 7 832312311310 22

1 4 5 6 7 832625624623 22

308

621

309

622

2nd field

(1)

765432313312311

336335321320319318317316315314313312311

1 8 22 23309

309

310

310

24

337

23

23

24

24

63

Chapter 4. Device Types

(1) For the purpose of this specification field 2 starts in line 314 and not 313.5 because half line
capturing is not supported.

Remember the VBI image format depends on the selected video standard, therefore the application
must choose a new standard or query the current standard first. Attempts to read or write data ahead
of format negotiation, or after switching the video standard which may invalidate the negotiated VBI
parameters, should be refused by the driver. A format change during active I/O is not permitted.

4.6.4. Reading and writing VBI images
To assure synchronization with the field number and easier implementation, the smallest unit of data
passed at a time is one frame, consisting of two fields of VBI images immediately following in
memory.

The total size of a frame computes as follows:

(count[0] + count[1]) *
samples_per_line * sample size in bytes

The sample size is most likely always one byte, applications must check the sample_format field
though, to function properly with other drivers.

A VBI device may support read/write and/or streaming (memory mapping or user pointer) I/O. The
latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

Remember the VIDIOC_STREAMON ioctl and the first read(), write() and select() call can be resource
allocation points returning an EBUSY error code if the required hardware resources are temporarily
unavailable, for example the device is already in use by another process.

4.7. Sliced VBI Data Interface
VBI stands for Vertical Blanking Interval, a gap in the sequence of lines of an analog video signal.
During VBI no picture information is transmitted, allowing some time while the electron beam of a
cathode ray tube TV returns to the top of the screen.

Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2 drivers shall not
do this by software, see also the raw VBI interface. The data is passed as short packets of fixed size,
covering one scan line each. The number of packets per video frame is variable.

Sliced VBI capture and output devices are accessed through the same character special files as raw
VBI devices. When a driver supports both interfaces, the default function of a /dev/vbi device is
raw VBI capturing or output, and the sliced VBI function is only available after calling the
VIDIOC_S_FMT ioctl as defined below. Different file descriptors must be used to pass raw and sliced
VBI data simultaneously, if this is supported by the driver.

4.7.1. Querying Capabilities
Devices supporting the sliced VBI capturing or output API set the
V4L2_CAP_SLICED_VBI_CAPTURE or V4L2_CAP_SLICED_VBI_OUTPUT flag respectively, in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl. At least

64

Chapter 4. Device Types

one of the read/write, streaming or asynchronous I/O methods must be supported. Sliced VBI
devices may have a tuner or modulator.

4.7.2. Supplemental Functions
Sliced VBI devices shall support video input or output and tuner or modulator ioctls if they have
these capabilities, and they may support control ioctls. The video standard ioctls provide information
vital to program a sliced VBI device, therefore must be supported.

4.7.3. Sliced VBI Format Negotiation
To find out which data services are supported by the hardware applications can call the
VIDIOC_G_SLICED_VBI_CAP ioctl. All drivers implementing the sliced VBI interface must support
this ioctl. The results may differ from those of the VIDIOC_S_FMT ioctl when the number of VBI
lines the hardware can capture or output per frame, or the number of services it can identify on a
given line are limited. For example on PAL line 16 the hardware may be able to look for a VPS or
Teletext signal, but not both at the same time.

To determine the currently selected services applications set the type field of struct v4l2_format to
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or V4L2_BUF_TYPE_SLICED_VBI_OUTPUT, and the
VIDIOC_G_FMT ioctl fills the fmt.sliced member, a struct v4l2_sliced_vbi_format.

Applications can request different parameters by initializing or modifying the fmt.sliced member
and calling the VIDIOC_S_FMT ioctl with a pointer to the v4l2_format structure.

The sliced VBI API is more complicated than the raw VBI API because the hardware must be told
which VBI service to expect on each scan line. Not all services may be supported by the hardware on
all lines (this is especially true for VBI output where Teletext is often unsupported and other services
can only be inserted in one specific line). In many cases, however, it is sufficient to just set the
service_set field to the required services and let the driver fill the service_lines array
according to hardware capabilities. Only if more precise control is needed should the programmer
set the service_lines array explicitly.

The VIDIOC_S_FMT ioctl returns an EINVAL error code only when the given parameters are
ambiguous, otherwise it modifies the parameters according to hardware capabilities. When the driver
allocates resources at this point, it may return an EBUSY error code if the required resources are
temporarily unavailable. Other resource allocation points which may return EBUSY can be the
VIDIOC_STREAMON ioctl and the first read(), write() and select() call.

Table 4-6. struct v4l2_sliced_vbi_format

__u32 service_set If service_set is non-zero when passed with VIDIOC_S_FMT or VIDIOC_TRY_FMT, the service_lines array will be filled by the driver according to the services specified in this field. For example, if service_set is initialized with V4L2_SLICED_TELETEXT_B | V4L2_SLICED_WSS_625, a driver for the cx25840 video decoder sets lines 7-22 of both fieldsa to V4L2_SLICED_TELETEXT_B and line 23 of the first field to V4L2_SLICED_WSS_625. If service_set is set to zero, then the values of service_lines will be used instead. On return the driver sets this field to the union of all elements of the returned service_lines array. It may contain less services than requested, perhaps just one, if the hardware cannot handle more services simultaneously. It may be empty (zero) if none of the requested services are supported by the hardware.

__u16 service_lines[2][24] Applications initialize this array with sets of data services the driver shall look for or insert on the respective scan line. Subject to hardware capabilities drivers return the requested set, a subset, which may be just a single service, or an empty set. When the hardware cannot handle multiple services on the same line the driver shall choose one. No assumptions can be made on which service the driver chooses. Data services are defined in Table 4-7>. Array indices map to ITU-R line numbers (see also Figure 4-2> and Figure 4-3>) as follows:

Element 525 line systems625 line systems

service_lines[0][1] 1 1

service_lines[0][23]23 23

service_lines[1][1]264 314

65

Chapter 4. Device Types

service_lines[1][23]286 336

Drivers must set service_lines[0][0] and service_lines[1][0] to zero.

__u32 io_size Maximum number of bytes passed by one read() or write() call, and the buffer size in bytes for the VIDIOC_QBUF and VIDIOC_DQBUF ioctl. Drivers set this field to the size of struct v4l2_sliced_vbi_data times the number of non-zero elements in the returned service_lines array (that is the number of lines potentially carrying data).

__u32 reserved[2] This array is reserved for future extensions. Applications and drivers must set it to zero.

Notes: a. According to ETS 300 706 lines 6-22 of the first field and lines 5-22 of the second field may carry Teletext data.

Table 4-7. Sliced VBI services

Symbol Value Reference Lines, usually Payload

V4L2_SLICED_TELETEXT_B

(Teletext System B)
0x0001 TELETEXT>PAL/SECAM line 7-22,

320-335 (second field
7-22)

Last 42 of the 45 byte
Teletext packet, that is
without clock run-in and
framing code, lsb first
transmitted.

V4L2_SLICED_VPS 0x0400 VPS> PAL line 16 Byte number 3 to 15
according to Figure 9 of
ETS 300 231, lsb first
transmitted.

V4L2_SLICED_CAPTION_5250x1000 EIA608> NTSC line 21, 284
(second field 21)

Two bytes in
transmission order,
including parity bit, lsb
first transmitted.

V4L2_SLICED_WSS_6250x4000 WSS> PAL/SECAM line 23 Byte 0 1
msb lsb msb lsb

Bit 7 6 5 4 3 2 1 0 x x 13 12 11 10 9

V4L2_SLICED_VBI_5250x1000 Set of services applicable to 525 line systems.

V4L2_SLICED_VBI_6250x4401 Set of services applicable to 625 line systems.

Drivers may return an EINVAL error code when applications attempt to read or write data without
prior format negotiation, after switching the video standard (which may invalidate the negotiated
VBI parameters) and after switching the video input (which may change the video standard as a side
effect). The VIDIOC_S_FMT ioctl may return an EBUSY error code when applications attempt to
change the format while i/o is in progress (between a VIDIOC_STREAMON and VIDIOC_STREAMOFF

call, and after the first read() or write() call).

4.7.4. Reading and writing sliced VBI data
A single read() or write() call must pass all data belonging to one video frame. That is an array
of v4l2_sliced_vbi_data structures with one or more elements and a total size not exceeding
io_size bytes. Likewise in streaming I/O mode one buffer of io_size bytes must contain data of
one video frame. The id of unused v4l2_sliced_vbi_data elements must be zero.

66

Chapter 4. Device Types

Table 4-8. struct v4l2_sliced_vbi_data

__u32 id A flag from Table 2> identifying the type of data
in this packet. Only a single bit must be set. When
the id of a captured packet is zero, the packet is
empty and the contents of other fields are
undefined. Applications shall ignore empty
packets. When the id of a packet for output is
zero the contents of the data field are undefined
and the driver must no longer insert data on the
requested field and line.

__u32 field The video field number this data has been
captured from, or shall be inserted at. 0 for the
first field, 1 for the second field.

__u32 line The field (as opposed to frame) line number this
data has been captured from, or shall be inserted
at. See Figure 4-2> and Figure 4-3> for valid
values. Sliced VBI capture devices can set the line
number of all packets to 0 if the hardware cannot
reliably identify scan lines. The field number must
always be valid.

__u32 reserved This field is reserved for future extensions.
Applications and drivers must set it to zero.

__u8 data[48] The packet payload. See Table 2> for the contents
and number of bytes passed for each data type.
The contents of padding bytes at the end of this
array are undefined, drivers and applications shall
ignore them.

Packets are always passed in ascending line number order, without duplicate line numbers. The
write() function and the VIDIOC_QBUF ioctl must return an EINVAL error code when applications
violate this rule. They must also return an EINVAL error code when applications pass an incorrect
field or line number, or a combination of field, line and id which has not been negotiated with
the VIDIOC_G_FMT or VIDIOC_S_FMT ioctl. When the line numbers are unknown the driver must
pass the packets in transmitted order. The driver can insert empty packets with id set to zero
anywhere in the packet array.

To assure synchronization and to distinguish from frame dropping, when a captured frame does not
carry any of the requested data services drivers must pass one or more empty packets. When an
application fails to pass VBI data in time for output, the driver must output the last VPS and WSS
packet again, and disable the output of Closed Caption and Teletext data, or output data which is
ignored by Closed Caption and Teletext decoders.

A sliced VBI device may support read/write and/or streaming (memory mapping and/or user pointer)
I/O. The latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

4.8. Teletext Interface
This interface aims at devices receiving and demodulating Teletext data [TELETEXT>], evaluating
the Teletext packages and storing formatted pages in cache memory. Such devices are usually

67

Chapter 4. Device Types

implemented as microcontrollers with serial interface (I2C) and can be found on older TV cards,
dedicated Teletext decoding cards and home-brew devices connected to the PC parallel port.

The Teletext API was designed by Martin Buck. It is defined in the kernel header file
linux/videotext.h, the specification is available from http://home.pages.de/~videotext/.
(Videotext is the name of the German public television Teletext service.) Conventional character
device file names are /dev/vtx and /dev/vttuner, with device number 83, 0 and 83, 16
respectively. A similar interface exists for the Philips SAA5249 Teletext decoder [specification?]
with character device file names /dev/tlkN, device number 102, N.

Eventually the Teletext API was integrated into the V4L API with character device file names
/dev/vtx0 to /dev/vtx31, device major number 81, minor numbers 192 to 223. For reference the
V4L Teletext API specification is reproduced here in full: "Teletext interfaces talk the existing VTX
API." Teletext devices with major number 83 and 102 will be removed in Linux 2.6.

There are no plans to replace the Teletext API or to integrate it into V4L2. Please write to the
Video4Linux mailing list: https://listman.redhat.com/mailman/listinfo/video4linux-list when the
need arises.

4.9. Radio Interface
This interface is intended for AM and FM (analog) radio receivers.

Conventionally V4L2 radio devices are accessed through character device special files named
/dev/radio and /dev/radio0 to /dev/radio63 with major number 81 and minor numbers 64
to 127.

4.9.1. Querying Capabilities
Devices supporting the radio interface set the V4L2_CAP_RADIO and V4L2_CAP_TUNER flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl. Other
combinations of capability flags are reserved for future extensions.

4.9.2. Supplemental Functions
Radio devices can support controls, and must support the tuner ioctls.

They do not support the video input or output, audio input or output, video standard, cropping and
scaling, compression and streaming parameter, or overlay ioctls. All other ioctls and I/O methods are
reserved for future extensions.

4.9.3. Programming
Radio devices may have a couple audio controls (as discussed in Section 1.8>) such as a volume
control, possibly custom controls. Further all radio devices have one tuner (these are discussed in
Section 1.6>) with index number zero to select the radio frequency and to determine if a monaural or
FM stereo program is received. Drivers switch automatically between AM and FM depending on the
selected frequency. The VIDIOC_G_TUNER ioctl reports the supported frequency range.

68

Chapter 4. Device Types

4.10. RDS Interface
The Radio Data System transmits supplementary information in binary format, for example the
station name or travel information, on a inaudible audio subcarrier of a radio program. This interface
aims at devices capable of receiving and decoding RDS information.

The V4L API defines its RDS API as follows.

From radio devices supporting it, RDS data can be read with the read() function. The data is
packed in groups of three, as follows:

1. First Octet Least Significant Byte of RDS Block

2. Second Octet Most Significant Byte of RDS Block

3. Third Octet Bit 7: Error bit. Indicates that an uncorrectable error occurred during reception of
this block. Bit 6: Corrected bit. Indicates that an error was corrected for this data block. Bits 5-3:
Received Offset. Indicates the offset received by the sync system. Bits 2-0: Offset Name.
Indicates the offset applied to this data.

It was argued the RDS API should be extended before integration into V4L2, no new API has been
devised yet. Please write to the Video4Linux mailing list for discussion:
https://listman.redhat.com/mailman/listinfo/video4linux-list. Meanwhile no V4L2 driver should set
the V4L2_CAP_RDS_CAPTURE capability flag.

Notes
1. A common application of two file descriptors is the XFree86 Xv/V4L interface driver and a

V4L2 application. While the X server controls video overlay, the application can take advantage
of memory mapping and DMA.

In the opinion of the designers of this API, no driver writer taking the efforts to support simultaneous
capturing and overlay will restrict this ability by requiring a single file descriptor, as in V4L and earlier
versions of V4L2. Making this optional means applications depending on two file descriptors need backup
routines to be compatible with all drivers, which is considerable more work than using two fds in
applications which do not. Also two fd’s fit the general concept of one file descriptor for each logical
stream. Hence as a complexity trade-off drivers must support two file descriptors and may support single fd
operation.

2. The X Window system defines "regions" which are vectors of struct BoxRec { short x1, y1, x2,
y2; } with width = x2 - x1 and height = y2 - y1, so one cannot pass X11 clip lists directly.

3. ASK: Amplitude-Shift Keying. A high signal level represents a ’1’ bit, a low level a ’0’ bit.

69

I. Function Reference

Table of Contents
V4L2 close()... 72
V4L2 ioctl().. 73
ioctl VIDIOC_CROPCAP.. 75
ioctl VIDIOC_ENUMAUDIO.. 77
ioctl VIDIOC_ENUMAUDOUT.. 78
ioctl VIDIOC_ENUM_FMT.. 79
ioctl VIDIOC_ENUMINPUT .. 81
ioctl VIDIOC_ENUMOUTPUT .. 84
ioctl VIDIOC_ENUMSTD ... 86
ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO... 90
ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT... 92
ioctl VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP... 94
ioctl VIDIOC_G_CROP, VIDIOC_S_CROP... 95
ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL... 97
ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF .. 99
ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT.. 102
ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY... 105
ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT .. 107
ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP .. 109
ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR.. 111
ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT.. 114
ioctl VIDIOC_G_PARM, VIDIOC_S_PARM ... 116
ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY ... 120
ioctl VIDIOC_G_SLICED_VBI_CAP.. 122
ioctl VIDIOC_G_STD, VIDIOC_S_STD ... 124
ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER... 125
ioctl VIDIOC_LOG_STATUS ... 129
ioctl VIDIOC_OVERLAY.. 130
ioctl VIDIOC_QBUF, VIDIOC_DQBUF.. 131
ioctl VIDIOC_QUERYBUF... 133
ioctl VIDIOC_QUERYCAP... 135
ioctl VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU .. 138
ioctl VIDIOC_QUERYSTD ... 141
ioctl VIDIOC_REQBUFS .. 143
ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF.. 145
V4L2 mmap() .. 147
V4L2 munmap().. 149
V4L2 open()... 150
V4L2 poll()... 152
V4L2 read() ... 153
V4L2 select().. 155
V4L2 write() .. 156

V4L2 close()

Name
v4l2-close — Close a V4L2 device

Synopsis

#include <unistd.h>

int close(int fd);

Arguments

fd

File descriptor returned by open().

Description
Closes the device. Any I/O in progress is terminated and resources associated with the file descriptor
are freed. However data format parameters, current input or output, control values or other properties
remain unchanged.

Return Value
The function returns 0 on success, -1 on failure and the errno is set appropriately. Possible error
codes:

EBADF

fd is not a valid open file descriptor.

72

V4L2 ioctl()

Name
v4l2-ioctl — Program a V4L2 device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp);

Arguments

fd

File descriptor returned by open().

request

V4L2 ioctl request code as defined in the videodev.h header file, for example
VIDIOC_QUERYCAP.

argp

Pointer to a function parameter, usually a structure.

Description
The ioctl() function is used to program V4L2 devices. The argument fd must be an open file
descriptor. An ioctl request has encoded in it whether the argument is an input, output or
read/write parameter, and the size of the argument argp in bytes. Macros and defines specifying
V4L2 ioctl requests are located in the videodev.h header file. Applications should use their own
copy, not include the version in the kernel sources on the system they compile on. All V4L2 ioctl
requests, their respective function and parameters are specified in Reference I, Function Reference>.

Return Value
On success the ioctl() function returns 0 and does not reset the errno variable. On failure -1 is
returned, when the ioctl takes an output or read/write parameter it remains unmodified, and the
errno variable is set appropriately. See below for possible error codes. Generic errors like EBADF
or EFAULT are not listed in the sections discussing individual ioctl requests.

Note ioctls may return undefined error codes. Since errors may have side effects such as a driver
reset applications should abort on unexpected errors.

73

V4L2 ioctl()

EBADF

fd is not a valid open file descriptor.

EBUSY

The property cannot be changed right now. Typically this error code is returned when I/O is in
progress or the driver supports multiple opens and another process locked the property.

EFAULT

argp references an inaccessible memory area.

ENOTTY

fd is not associated with a character special device.

EINVAL

The request or the data pointed to by argp is not valid. This is a very common error code, see
the individual ioctl requests listed in Reference I, Function Reference> for actual causes.

ENOMEM

Insufficient memory to complete the request.

ERANGE

The application attempted to set a control with the VIDIOC_S_CTRL ioctl to a value which is
out of bounds.

74

ioctl VIDIOC_CROPCAP

Name
VIDIOC_CROPCAP — Information about the video cropping and scaling abilities.

Synopsis

int ioctl(int fd, int request, struct v4l2_cropcap *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_CROPCAP

argp

Description
Applications use this function to query the cropping limits, the pixel aspect of images and to
calculate scale factors. They set the type field of a v4l2_cropcap structure to the respective buffer
(stream) type and call the VIDIOC_CROPCAP ioctl with a pointer to this structure. Drivers fill the rest
of the structure. The results are constant except when switching the video standard. Remember this
switch can occur implicit when switching the video input or output.

Table 1. struct v4l2_cropcap

enum v4l2_buf_type type Type of the data stream, set by the application.
Only these types are valid here:
V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OVERLAY, and custom
(driver defined) types with code
V4L2_BUF_TYPE_PRIVATE and higher.

75

ioctl VIDIOC_CROPCAP

struct v4l2_rect bounds Defines the window within capturing or output is
possible, this may exclude for example the
horizontal and vertical blanking areas. The
cropping rectangle cannot exceed these limits.
Width and height are defined in pixels, the driver
writer is free to choose origin and units of the
coordinate system in the analog domain.

struct v4l2_rect defrect Default cropping rectangle, it shall cover the
"whole picture". Assuming pixel aspect 1/1 this
could be for example a 640 × 480 rectangle for
NTSC, a 768 × 576 rectangle for PAL and
SECAM centered over the active picture area. The
same co-ordinate system as for bounds is used.

struct v4l2_fract pixelaspect This is the pixel aspect (y / x) when no scaling is
applied, the ratio of the actual sampling
frequency and the frequency required to get
square pixels.
When cropping coordinates refer to square
pixels, the driver sets pixelaspect to 1/1.
Other common values are 54/59 for PAL and
SECAM, 11/10 for NTSC sampled according to
[ITU601>].

Table 2. struct v4l2_rect

__s32 left Horizontal offset of the top, left corner of the
rectangle, in pixels.

__s32 top Vertical offset of the top, left corner of the
rectangle, in pixels.

__s32 width Width of the rectangle, in pixels.

__s32 height Height of the rectangle, in pixels. Width and
height cannot be negative, the fields are signed for
hysterical reasons.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_cropcap type is invalid or the ioctl is not supported. This is not permitted for
video capture, output and overlay devices, which must support VIDIOC_CROPCAP.

76

ioctl VIDIOC_ENUMAUDIO

Name
VIDIOC_ENUMAUDIO — Enumerate audio inputs

Synopsis

int ioctl(int fd, int request, struct v4l2_audio *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUMAUDIO

argp

Description
To query the attributes of an audio input applications initialize the index field and zero out the
reserved array of a struct v4l2_audio and call the VIDIOC_ENUMAUDIO ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out
of bounds. To enumerate all audio inputs applications shall begin at index zero, incrementing by one
until the driver returns EINVAL.

See ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO(2)> for a description of struct v4l2_audio.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The number of the audio input is out of bounds, or there are no audio inputs at all and this ioctl
is not supported.

77

ioctl VIDIOC_ENUMAUDOUT

Name
VIDIOC_ENUMAUDOUT — Enumerate audio outputs

Synopsis

int ioctl(int fd, int request, struct v4l2_audioout *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUMAUDOUT

argp

Description
To query the attributes of an audio output applications initialize the index field and zero out the
reserved array of a struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to
this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is
out of bounds. To enumerate all audio outputs applications shall begin at index zero, incrementing by
one until the driver returns EINVAL.

Note connectors on a TV card to loop back the received audio signal to a sound card are not audio
outputs in this sense.

See ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT(2)> for a description of
struct v4l2_audioout.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The number of the audio output is out of bounds, or there are no audio outputs at all and this
ioctl is not supported.

78

ioctl VIDIOC_ENUM_FMT

Name
VIDIOC_ENUM_FMT — Enumerate image formats

Synopsis

int ioctl(int fd, int request, struct v4l2_fmtdesc *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUM_FMT

argp

Description
To enumerate image formats applications initialize the type and index field of struct v4l2_fmtdesc
and call the VIDIOC_ENUM_FMT ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code. All formats are enumerable by beginning at index zero
and incrementing by one until EINVAL is returned.

Table 1. struct v4l2_fmtdesc

__u32 index Number of the format in the enumeration, set by
the application. This is in no way related to the
pixelformat field.

enum v4l2_buf_type type Type of the data stream, set by the application.
Only these types are valid here:
V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OVERLAY, and custom
(driver defined) types with code
V4L2_BUF_TYPE_PRIVATE and higher.

__u32 flags See Table 2>

__u8 description[32] Description of the format, a NUL-terminated
ASCII string. This information is intended for the
user, for example: "YUV 4:2:2".

79

ioctl VIDIOC_ENUM_FMT

__u32 pixelformat The image format identifier. This is a four
character code as computed by the v4l2_fourcc()
macro:

#define v4l2_fourcc(a,b,c,d) (((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24)) Several image formats are already defined by this specification in Chapter 2>. Note these codes are not the same as those used in the Windows world.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. Image Format Description Flags

V4L2_FMT_FLAG_COMPRESSED 0x0001 This is a compressed format.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_fmtdesc type is not supported or the index is out of bounds.

80

ioctl VIDIOC_ENUMINPUT

Name
VIDIOC_ENUMINPUT — Enumerate video inputs

Synopsis

int ioctl(int fd, int request, struct v4l2_input *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUMINPUT

argp

Description
To query the attributes of a video input applications initialize the index field of struct v4l2_input
and call the VIDIOC_ENUMINPUT ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code when the index is out of bounds. To enumerate all inputs
applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Table 1. struct v4l2_input

__u32 index Identifies the input, set by the application.

__u8 name[32] Name of the video input, a NUL-terminated
ASCII string, for example: "Vin (Composite 2)".
This information is intended for the user,
preferably the connector label on the device itself.

__u32 type Type of the input, see Table 2>.

81

ioctl VIDIOC_ENUMINPUT

__u32 audioset Video inputs combine with zero or more audio
inputs. For example one composite video
connectors may exist, but two audio connectors.
On the other hand, video from a tuner will likely
combine only with audio from the same tuner.
Devices with N audio inputs number them 0 . . .
N-1 with N ≤ 32. Each bit position of audioset
represents one audio input. For details on audio
inputs and how to switch see Section 1.5>.

__u32 tuner Capture devices can have zero or more tuners (RF
demodulators). When the type is set to
V4L2_INPUT_TYPE_TUNER this is an RF
connector and this field identifies the tuner. It
corresponds to struct v4l2_tuner field index. For
details on tuners see Section 1.6>.

v4l2_std_id std Every video input supports one or more different
video standards. This field is a set of all supported
standards. For details on video standards and how
to switch see Section 1.7>.

__u32 status This field provides status information about the
input. See Table 3> for flags. status is only valid
when this is the current input.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. Input Types

V4L2_INPUT_TYPE_TUNER 1 This input uses a tuner (RF demodulator).

V4L2_INPUT_TYPE_CAMERA 2 Analog baseband input, for example CVBS /
Composite Video, S-Video, RGB.

Table 3. Input Status Flags

General

V4L2_IN_ST_NO_POWER 0x00000001 Attached device is off.

V4L2_IN_ST_NO_SIGNAL 0x00000002

V4L2_IN_ST_NO_COLOR 0x00000004 The hardware supports color
decoding, but does not detect
color modulation in the signal.

Analog Video

V4L2_IN_ST_NO_H_LOCK 0x00000100 No horizontal sync lock.

V4L2_IN_ST_COLOR_KILL 0x00000200 A color killer circuit
automatically disables color
decoding when it detects no color
modulation. When this flag is set
the color killer is enabled and
has shut off color decoding.

82

ioctl VIDIOC_ENUMINPUT

Digital Video

V4L2_IN_ST_NO_SYNC 0x00010000 No synchronization lock.

V4L2_IN_ST_NO_EQU 0x00020000 No equalizer lock.

V4L2_IN_ST_NO_CARRIER 0x00040000 Carrier recovery failed.

VCR and Set-Top Box

V4L2_IN_ST_MACROVISION 0x01000000 Macrovision is an analog copy
prevention system mangling the
video signal to confuse video
recorders. When this flag is set
Macrovision has been detected.

V4L2_IN_ST_NO_ACCESS 0x02000000 Conditional access denied.

V4L2_IN_ST_VTR 0x04000000 VTR time constant. [?]

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_input index is out of bounds.

83

ioctl VIDIOC_ENUMOUTPUT

Name
VIDIOC_ENUMOUTPUT — Enumerate video outputs

Synopsis

int ioctl(int fd, int request, struct v4l2_output *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUMOUTPUT

argp

Description
To query the attributes of a video outputs applications initialize the index field of struct v4l2_output
and call the VIDIOC_ENUMOUTPUT ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code when the index is out of bounds. To enumerate all outputs
applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Table 1. struct v4l2_output

__u32 index Identifies the output, set by the application.

__u8 name[32] Name of the video output, a NUL-terminated
ASCII string, for example: "Vout". This
information is intended for the user, preferably the
connector label on the device itself.

__u32 type Type of the output, see Table 2>.

84

ioctl VIDIOC_ENUMOUTPUT

__u32 audioset Video outputs combine with zero or more audio
outputs. For example one composite video
connectors may exist, but two audio connectors.
On the other hand, video to a modulator will likely
combine only with audio to the same modulator.
Devices with N audio outputs number them 0 . . .
N-1 with N ≤ 32. Each bit position of audioset
represents one audio output. For details on audio
outputs and how to switch see Section 1.5>.

__u32 modulator Output devices can have zero or more RF
modulators. When the type is
V4L2_OUTPUT_TYPE_MODULATOR this is an RF
connector and this field identifies the modulator. It
corresponds to struct v4l2_modulator field index.
For details on modulators see Section 1.6>.

v4l2_std_id std Every video output supports one or more different
video standards. This field is a set of all supported
standards. For details on video standards and how
to switch see Section 1.7>.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. Output Type

V4L2_OUTPUT_TYPE_MODULATOR 1 This output is an analog TV modulator.

V4L2_OUTPUT_TYPE_ANALOG 2 Analog baseband output, for example Composite /
CVBS, S-Video, RGB.

V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY3 [?]

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_output index is out of bounds.

85

ioctl VIDIOC_ENUMSTD

Name
VIDIOC_ENUMSTD — Enumerate supported video standards

Synopsis

int ioctl(int fd, int request, struct v4l2_standard *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_ENUMSTD

argp

Description
To query the attributes of a video standard, especially a custom (driver defined) one, applications
initialize the index field of struct v4l2_standard and call the VIDIOC_ENUMSTD ioctl with a pointer
to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index
is out of bounds. To enumerate all standards applications shall begin at index zero, incrementing by
one until the driver returns EINVAL. Drivers may enumerate a different set of standards after
switching the video input or output.1

Table 1. struct v4l2_standard

__u32 index Number of the video standard, set by the
application.

v4l2_std_id id The bits in this field identify the standard as one
of the common standards listed in Table 3>, or if
bits 32 to 63 are set as custom standards. Multiple
bits can be set if the hardware does not distinguish
between these standards, however separate indices
do not indicate the opposite. The id must be
unique. No other enumerated v4l2_standard
structure, for this input or output anyway, can
contain the same set of bits.

86

ioctl VIDIOC_ENUMSTD

__u8 name[24] Name of the standard, a NUL-terminated ASCII
string, for example: "PAL-B/G", "NTSC Japan".
This information is intended for the user.

struct v4l2_fract frameperiod The frame period (not field period) is numerator /
denominator. For example M/NTSC has a frame
period of 1001 / 30000 seconds.

__u32 framelines Total lines per frame including blanking, e. g. 625
for B/PAL.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. struct v4l2_fract

__u32 numerator

__u32 denominator

Table 3. typedef v4l2_std_id

__u64 v4l2_std_id This type is a set, each bit representing another
video standard as listed below and in Table 4>.
The 32 most significant bits are reserved for
custom (driver defined) video standards.

#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

V4L2_STD_PAL_60 is a hybrid standard with 525 lines, 60 Hz refresh rate, and PAL color
modulation with a 4.43 MHz color subcarrier. Some PAL video recorders can play back NTSC tapes
in this mode for display on a 50/60 Hz agnostic PAL TV.

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000)
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000)
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)

V4L2_STD_NTSC_443 is a hybrid standard with 525 lines, 60 Hz refresh rate, and NTSC color
modulation with a 4.43 MHz color subcarrier.

87

ioctl VIDIOC_ENUMSTD

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB are U.S. terrestrial digital TV standards.
Presently the V4L2 API does not support digital TV. See also the Linux DVB API at
http://linuxtv.org.

#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |\
V4L2_STD_PAL_B1 |\
V4L2_STD_PAL_G)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |\
V4L2_STD_PAL_D1 |\
V4L2_STD_PAL_K)

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |\
V4L2_STD_PAL_DK |\
V4L2_STD_PAL_H |\
V4L2_STD_PAL_I)

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |\
V4L2_STD_NTSC_M_JP)

#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |\
V4L2_STD_SECAM_K |\
V4L2_STD_SECAM_K1)

#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |\
V4L2_STD_SECAM_G |\
V4L2_STD_SECAM_H |\
V4L2_STD_SECAM_DK |\
V4L2_STD_SECAM_L)

#define V4L2_STD_525_60 (V4L2_STD_PAL_M |\
V4L2_STD_PAL_60 |\
V4L2_STD_NTSC |\
V4L2_STD_NTSC_443)

#define V4L2_STD_625_50 (V4L2_STD_PAL |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_SECAM)

#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |\

V4L2_STD_625_50)

Table 4. Video Standards (based on [ITU470>])

88

ioctl VIDIOC_ENUMSTD

Characteristics
M/NTSCa

M/PAL N/PALb B, B1,
G/PAL

D, D1,
K/PAL

H/PAL I/PAL B,
G/SECAM

D,
K/SECAMK1/SECAML/SECAM

Frame
lines

525 625

Frame
period
(s)

1001/30000 1/25

Chrominance
sub-
carrier
fre-
quency
(Hz)

3579545
± 10

3579611.49
± 10

4433618.75
± 5
(3582056.25
± 5)

4433618.75 ± 5
4433618.75
± 1

fOR = 4406250 ± 2000, fOB = 4250000 ± 2000

Nominal
radio-
frequency
channel
band-
width
(MHz)

6 6 6 B: 7;
B1, G:
8

8 8 8 8 8 8 8

Sound
carrier
relative
to
vision
carrier
(MHz)

+ 4.5 + 4.5 + 4.5 + 5.5
± 0.001
c d e f

+ 6.5
± 0.001

+ 5.5
+ 5.9996
± 0.0005

+ 5.5
± 0.001

+ 6.5
± 0.001

+ 6.5 + 6.5 g

Notes: a. Japan uses a standard similar to M/NTSC (V4L2_STD_NTSC_M_JP). b. The values in brackets apply to the combination N/PAL a.k.a. NC used in Argentina (V4L2_STD_PAL_Nc). c. In the Federal Republic of Germany, Austria, Italy, the Netherlands, Slovakia and Switzerland a system of two sound carriers is used, the frequency of the second carrier being 242.1875 kHz above the frequency of the first sound carrier. For stereophonic sound transmissions a similar system is used in Australia. d. New Zealand uses a sound carrier displaced 5.4996 ± 0.0005 MHz from the vision carrier. e. In Denmark, Finland, New Zealand, Sweden and Spain a system of two sound carriers is used. In Iceland, Norway and Poland the same system is being introduced. The second carrier is 5.85 MHz above the vision carrier and is DQPSK modulated with 728 kbit/s sound and data multiplex. (NICAM system) f. In the United Kingdom, a system of two sound carriers is used. The second sound carrier is 6.552 MHz above the vision carrier and is DQPSK modulated with a 728 kbit/s sound and data multiplex able to carry two sound channels. (NICAM system) g. In France, a digital carrier 5.85 MHz away from the vision carrier may be used in addition to the main sound carrier. It is modulated in differentially encoded QPSK with a 728 kbit/s sound and data multiplexer capable of carrying two sound channels. (NICAM system)

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_standard index is out of bounds.

89

Notes
1. The supported standards may overlap and we need an unambiguous set to find the current

standard returned by VIDIOC_G_STD.

ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Name
VIDIOC_G_AUDIO, VIDIOC_S_AUDIO — Query or select the current audio input and its
attributes

Synopsis

int ioctl(int fd, int request, struct v4l2_audio *argp);

int ioctl(int fd, int request, const struct v4l2_audio *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

argp

Description
To query the current audio input applications zero out the reserved array of a struct v4l2_audio
and call the VIDIOC_G_AUDIO ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code when the device has no audio inputs, or none which
combine with the current video input.

Audio inputs have one writable property, the audio mode. To select the current audio input and
change the audio mode, applications initialize the index and mode fields, and the reserved array
of a v4l2_audio structure and call the VIDIOC_S_AUDIO ioctl. Drivers may switch to a different
audio mode if the request cannot be satisfied. However, this is a write-only ioctl, it does not return
the actual new audio mode.

90

ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Table 1. struct v4l2_audio

__u32 index Identifies the audio input, set by the driver or
application.

__u8 name[32] Name of the audio input, a NUL-terminated
ASCII string, for example: "Line In". This
information is intended for the user, preferably the
connector label on the device itself.

__u32 capability Audio capability flags, see Table 2>.

__u32 mode Audio mode set by drivers and applications (on
VIDIOC_S_AUDIO ioctl), see Table 3>.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 2. Audio Capability Flags

V4L2_AUDCAP_STEREO 0x00001 This is a stereo input. The flag is intended to
automatically disable stereo recording etc. when
the signal is always monaural. The API provides
no means to detect if stereo is received, unless the
audio input belongs to a tuner.

V4L2_AUDCAP_AVL 0x00002 Automatic Volume Level mode is supported.

Table 3. Audio Modes

V4L2_AUDMODE_AVL 0x00001 AVL mode is on.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

No audio inputs combine with the current video input, or the number of the selected audio input
is out of bounds or it does not combine, or there are no audio inputs at all and the ioctl is not
supported.

EBUSY

I/O is in progress, the input cannot be switched.

91

ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

Name
VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT — Query or select the current audio output

Synopsis

int ioctl(int fd, int request, struct v4l2_audioout *argp);

int ioctl(int fd, int request, const struct v4l2_audioout *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

argp

Description
To query the current audio output applications zero out the reserved array of a
struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers
fill the rest of the structure or return an EINVAL error code when the device has no audio inputs, or
none which combine with the current video output.

Audio outputs have no writable properties. Nevertheless, to select the current audio output
applications can initialize the index field and reserved array (which in the future may contain
writable properties) of a v4l2_audioout structure and call the VIDIOC_S_AUDOUT ioctl. Drivers
switch to the requested output or return the EINVAL error code when the index is out of bounds.
This is a write-only ioctl, it does not return the current audio output attributes as VIDIOC_G_AUDOUT
does.

Note connectors on a TV card to loop back the received audio signal to a sound card are not audio
outputs in this sense.

Table 1. struct v4l2_audioout

__u32 index Identifies the audio output, set by the driver or
application.

92

ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

__u8 name[32] Name of the audio output, a NUL-terminated
ASCII string, for example: "Line Out". This
information is intended for the user, preferably the
connector label on the device itself.

__u32 capability Audio capability flags, none defined yet. Drivers
must set this field to zero.

__u32 mode Audio mode, none defined yet. Drivers and
applications (on VIDIOC_S_AUDOUT) must set
this field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

No audio outputs combine with the current video output, or the number of the selected audio
output is out of bounds or it does not combine, or there are no audio outputs at all and the ioctl
is not supported.

EBUSY

I/O is in progress, the output cannot be switched.

93

ioctl VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP

Name
VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP — Get or set compression parameters

Synopsis

int ioctl(int fd, int request, v4l2_mpeg_compression *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_MPEGCOMP, VIDIOC_S_MPEGCOMP

argp

Description
[to do]

Table 1. struct v4l2_mpeg_compression

[to do]

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

This ioctl is not supported

94

ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

Name
VIDIOC_G_CROP, VIDIOC_S_CROP — Get or set the current cropping rectangle

Synopsis

int ioctl(int fd, int request, struct v4l2_crop *argp);

int ioctl(int fd, int request, const struct v4l2_crop *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_CROP, VIDIOC_S_CROP

argp

Description
To query the cropping rectangle size and position applications set the type field of a v4l2_crop
structure to the respective buffer (stream) type and call the VIDIOC_G_CROP ioctl with a pointer to
this structure. The driver fills the rest of the structure or returns the EINVAL error code if cropping is
not supported.

To change the cropping rectangle applications initialize the type and struct v4l2_rect substructure
named c of a v4l2_crop structure and call the VIDIOC_S_CROP ioctl with a pointer to this structure.

The driver first adjusts the requested dimensions against hardware limits, i. e. the bounds given by
the capture/output window, and it rounds to the closest possible values of horizontal and vertical
offset, width and height. In particular the driver must round the vertical offset of the cropping
rectangle to frame lines modulo two, such that the field order cannot be confused.

Second the driver adjusts the image size (the opposite rectangle of the scaling process, source or
target depending on the data direction) to the closest size possible while maintaining the current
horizontal and vertical scaling factor.

Finally the driver programs the hardware with the actual cropping and image parameters.
VIDIOC_S_CROP is a write-only ioctl, it does not return the actual parameters. To query them
applications must call VIDIOC_G_CROP and VIDIOC_G_FMT. When the parameters are unsuitable

95

ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

the application may modify the cropping or image parameters and repeat the cycle until satisfactory
parameters have been negotiated.

When cropping is not supported then no parameters are changed and VIDIOC_S_CROP returns the
EINVAL error code.

Table 1. struct v4l2_crop

enum v4l2_buf_type type Type of the data stream, set by the application.
Only these types are valid here:
V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OVERLAY, and custom
(driver defined) types with code
V4L2_BUF_TYPE_PRIVATE and higher.

struct v4l2_rect c Cropping rectangle. The same co-ordinate system
as for struct v4l2_cropcap bounds is used.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

Cropping is not supported.

96

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name
VIDIOC_G_CTRL, VIDIOC_S_CTRL — Get or set the value of a control

Synopsis

int ioctl(int fd, int request, struct v4l2_control *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_CTRL, VIDIOC_S_CTRL

argp

Description
To get the current value of a control applications initialize the id field of a struct v4l2_control and
call the VIDIOC_G_CTRL ioctl with a pointer to this structure. To change the value of a control
applications initialize the id and value fields of a struct v4l2_control and call the VIDIOC_S_CTRL
ioctl.

When the id is invalid drivers return an EINVAL error code. When the value is out of bounds
drivers can choose to take the closest valid value or return an ERANGE error code, whatever seems
more appropriate. However, VIDIOC_S_CTRL is a write-only ioctl, it does not return the actual new
value.

Table 1. struct v4l2_control

__u32 id Identifies the control, set by the application.

__s32 value New value or current value.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

97

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

EINVAL

The struct v4l2_control id is invalid.

ERANGE

The struct v4l2_control value is out of bounds.

EBUSY

The control is temporarily not changeable, possibly because another applications took over
control of the device function this control belongs to.

98

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

Name
VIDIOC_G_FBUF, VIDIOC_S_FBUF — Get or set frame buffer overlay parameters.

Synopsis

int ioctl(int fd, int request, struct v4l2_framebuffer *argp);

int ioctl(int fd, int request, const struct v4l2_framebuffer *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_FBUF, VIDIOC_S_FBUF

argp

Description
The VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctl are used to get and set the frame buffer parameters
for video overlay.

To get the current parameters applications call the VIDIOC_G_FBUF ioctl with a pointer to a
v4l2_framebuffer structure, the driver fills all fields of the structure or returns the EINVAL error code
when overlay is not supported. To set the parameters applications initialize the flags field, base
unless the overlay is of V4L2_FBUF_CAP_EXTERNOVERLAY type, and the struct v4l2_pix_format
fmt substructure. The driver accordingly prepares for overlay or returns an error code.

When the driver does not support V4L2_FBUF_CAP_EXTERNOVERLAY, i. e. it will write into video
memory, the VIDIOC_S_FBUF ioctl is a privileged function and only the superuser can change the
frame buffer parameters.

Table 1. struct v4l2_framebuffer

__u32 capability Overlay capability flags set by the
driver, see Table 2>.

__u32 flags Overlay control flags set by application
and driver, see Table 3>

99

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

void * base Physical base address of the frame
buffer, the address of the pixel at
coordinates (0; 0) in the frame buffer.
This field is not used when
VIDIOC_G_FBUF sets the
V4L2_FBUF_CAP_EXTERNOVERLAY

flag in the capability field.a

struct v4l2_pix_formatfmt Physical layout of the frame buffer. The
v4l2_pix_format structure is defined in
Chapter 2>, for clarification the fields
and expected values are listed below.

__u32 width Width of the frame buffer in pixels.

__u32 height Height of the frame buffer in pixels.
When the driver clears
V4L2_FBUF_CAP_EXTERNOVERLAY,
the visible portion of the frame buffer
can be smaller than width and height.

__u32 pixelformat The pixel format of the graphics
surface, set by the application. Usually
this is an RGB format (for example
RGB 5:6:5) but YUV formats are also
permitted. The behavior of the driver
when requesting a compressed format is
undefined. See Chapter 2> for
information on pixel formats. This field
is not used when the driver sets
V4L2_FBUF_CAP_EXTERNOVERLAY.

enum v4l2_field field Ignored. The field order is selected with
the VIDIOC_S_FMT ioctl using
struct v4l2_window.

__u32 bytesperline Distance in bytes between the leftmost
pixels in two adjacent lines.

Both applications and drivers can set this field to request padding bytes at the end of each line. Drivers however may ignore the value requested by the application, returning width times bytes per pixel or a larger value required by the hardware. That implies applications can just set this field to zero to get a reasonable default. Video hardware may access padding bytes, therefore they must reside in accessible memory. Consider cases where padding bytes after the last line of an image cross a system page boundary. Input devices may write padding bytes, the value is undefined. Output devices ignore the contents of padding bytes. When the image format is planar the bytesperline value applies to the largest plane and is divided by the same factor as the width field for any smaller planes. For example the Cb and Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a multiple of the scale factor. This field is not used when the driver sets V4L2_FBUF_CAP_EXTERNOVERLAY.

__u32 sizeimage Applications must initialize this field.
Together with base it defines the
frame buffer memory accessible by the
driver.
The field is not used when the driver
sets
V4L2_FBUF_CAP_EXTERNOVERLAY.

enum v4l2_colorspacecolorspace This information supplements the
pixelformat and must be set by the
driver, see Section 2.2>.

__u32 priv Reserved for additional information
about custom (driver defined) formats.
When not used drivers and applications
must set this field to zero.

Notes: a. A physical base address may not suit all platforms. GK notes in theory we should pass something like PCI device + memory region + offset instead. If you encounter problems please discuss on the Video4Linux mailing list: https://listman.redhat.com/mailman/listinfo/video4linux-list.

100

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

Table 2. Frame Buffer Capability Flags

V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001 The video is overlaid externally onto the video
signal of the graphics card.

V4L2_FBUF_CAP_CHROMAKEY 0x0002 The device supports clipping by chroma-keying
the image into the display.

V4L2_FBUF_CAP_LIST_CLIPPING 0x0004 The device supports clipping using a list of clip
rectangles.

V4L2_FBUF_CAP_BITMAP_CLIPPING0x0008 The device supports clipping using a bit mask.

Table 3. Frame Buffer Flags

V4L2_FBUF_FLAG_PRIMARY 0x0001 The frame buffer is the primary graphics surface.
In other words, the overlay is destructive, the
video hardware will write the image into visible
graphics memory as opposed to merely displaying
the image in place of the original display contents.

V4L2_FBUF_FLAG_OVERLAY 0x0002 The frame buffer is an overlay surface the same
size as the capture. [?]

V4L2_FBUF_FLAG_CHROMAKEY 0x0004 Use chromakey (when
V4L2_FBUF_CAP_CHROMAKEY indicates this
capability). The other clipping methods are
negotiated with the VIDIOC_S_FMT ioctl, see also
Section 4.2>.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EACCES

VIDIOC_S_FBUF can only be called by a privileged user.

EBUSY

The frame buffer parameters cannot be changed at this time because overlay is already enabled,
or capturing is enabled and the hardware cannot capture and overlay simultaneously.

EINVAL

The ioctl is not supported or the VIDIOC_S_FBUF parameters are unsuitable.

101

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT,
VIDIOC_TRY_FMT

Name
VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT — Get or set the data format, try a
format.

Synopsis

int ioctl(int fd, int request, struct v4l2_format *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

argp

Description
These ioctls are used to negotiate the format of data (typically image format) exchanged between
driver and application.

To query the current parameters applications set the type field of a struct v4l2_format to the
respective buffer (stream) type. For example video capture devices use
V4L2_BUF_TYPE_VIDEO_CAPTURE. When the application calls the VIDIOC_G_FMT ioctl with a
pointer to this structure the driver fills the respective member of the fmt union. In case of video
capture devices that is the struct v4l2_pix_format pix member. When the requested buffer type is
not supported drivers return an EINVAL error code.

To change the current format parameters applications initialize the type field and all fields of the
respective fmt union member. For details see the documentation of the various devices types in
Chapter 4>. Good practice is to query the current parameters first, and to modify only those
parameters not suitable for the application. When the application calls the VIDIOC_S_FMT ioctl with
a pointer to a v4l2_format structure the driver checks and adjusts the parameters against hardware
abilities. Drivers should not return an error code unless the input is ambiguous, this is a mechanism
to fathom device capabilities and to approach parameters acceptable for both the application and
driver. On success the driver may program the hardware, allocate resources and generally prepare for
data exchange. Finally the VIDIOC_S_FMT ioctl returns the current format parameters as
VIDIOC_G_FMT does. Very simple, inflexible devices may even ignore all input and always return

102

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

the default parameters. However all V4L2 devices exchanging data with the application must
implement the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl. When the requested buffer type is not
supported drivers return an EINVAL error code on a VIDIOC_S_FMT attempt. When I/O is already in
progress or the resource is not available for other reasons drivers return the EBUSY error code.

The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception: it does not change
driver state. It can also be called at any time, never returning EBUSY. This function is provided to
negotiate parameters, to learn about hardware limitations, without disabling I/O or possibly time
consuming hardware preparations. Although strongly recommended drivers are not required to
implement this ioctl.

Table 1. struct v4l2_format

enum v4l2_buf_type type Type of the data stream,
see Table 3-2>.

union fmt

struct v4l2_pix_format pix Definition of an image
format, see Chapter 2>,
used by video capture
and output devices.

struct v4l2_window win Definition of an overlaid
image, see Section 4.2>,
used by video overlay
devices.

struct v4l2_vbi_format vbi Raw VBI capture or
output parameters. This
is discussed in more
detail in Section 4.6>.
Used by raw VBI
capture and output
devices.

struct v4l2_sliced_vbi_formatsliced Sliced VBI capture or
output parameters. See
Section 4.7> for details.
Used by sliced VBI
capture and output
devices.

__u8 raw_data[200] Place holder for future
extensions and custom
(driver defined) formats
with type

V4L2_BUF_TYPE_PRIVATE

and higher.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

103

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

EBUSY

The data format cannot be changed at this time, for example because I/O is already in progress.

EINVAL

The struct v4l2_format type field is invalid, the requested buffer type not supported, or
VIDIOC_TRY_FMT was called and is not supported with this buffer type.

104

ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

Name
VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY — Get or set tuner or modulator radio
frequency

Synopsis

int ioctl(int fd, int request, struct v4l2_frequency *argp);

int ioctl(int fd, int request, const struct v4l2_frequency *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

argp

Description
To get the current tuner or modulator radio frequency applications set the tuner field of a
struct v4l2_frequency to the respective tuner or modulator number (only input devices have tuners,
only output devices have modulators), zero out the reserved array and call the
VIDIOC_G_FREQUENCY ioctl with a pointer to this structure. The driver stores the current frequency
in the frequency field.

To change the current tuner or modulator radio frequency applications initialize the tuner and
frequency fields, and the reserved array of a struct v4l2_frequency and call the
VIDIOC_S_FREQUENCY ioctl with a pointer to this structure. When the requested frequency is not
possible the driver assumes the closest possible value. However, VIDIOC_S_FREQUENCY is a
write-only ioctl, it does not return the actual new frequency.

Table 1. struct v4l2_frequency

105

ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

__u32 tuner The tuner or modulator index number. This is the
same value as in the struct v4l2_input tuner field
and the struct v4l2_tuner index field, or the
struct v4l2_output modulator field and the
struct v4l2_modulator index field.

enum v4l2_tuner_type type The tuner type. This is the same value as in the
struct v4l2_tuner type field. The field is not
applicable to modulators, i. e. ignored by drivers.

__u32 frequency Tuning frequency in units of 62.5 kHz, or if the
struct v4l2_tuner or struct v4l2_modulator
capabilities flag V4L2_TUNER_CAP_LOW is
set, in units of 62.5 Hz.

__u32 reserved[8]; Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The tuner field is out of bounds.

106

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name
VIDIOC_G_INPUT, VIDIOC_S_INPUT — Query or select the current video input

Synopsis

int ioctl(int fd, int request, int *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_INPUT, VIDIOC_S_INPUT

argp

Description
To query the current video input applications call the VIDIOC_G_INPUT ioctl with a pointer to an
integer where the driver stores the number of the input, as in the struct v4l2_input index field. This
ioctl will fail only when there are no video inputs, returning EINVAL.

To select a video input applications store the number of the desired input in an integer and call the
VIDIOC_S_INPUT ioctl with a pointer to this integer. Side effects are possible. For example inputs
may support different video standards, so the driver may implicitly switch the current standard. It is
good practice to select an input before querying or negotiating any other parameters.

Information about video inputs is available using the VIDIOC_ENUMINPUT ioctl.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The number of the video input is out of bounds, or there are no video inputs at all and this ioctl
is not supported.

107

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

EBUSY

I/O is in progress, the input cannot be switched.

108

ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

Name
VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP —

Synopsis

int ioctl(int fd, int request, v4l2_jpegcompression *argp);

int ioctl(int fd, int request, const v4l2_jpegcompression *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

argp

Description
[to do]

Ronald Bultje elaborates:

APP is some application-specific information. The application can set it itself, and it’ll be stored in
the JPEG-encoded fields (e.g. interlacing information for in an AVI or so). COM is the same, but it’s
comments, like ’encoded by me’ or so.

jpeg_markers describes whether the huffman tables, quantization tables and the restart interval
information (all JPEG-specific stuff) should be stored in the JPEG-encoded fields. These define how
the JPEG field is encoded. If you omit them, applications assume you’ve used standard encoding.
You usually do want to add them.

Table 1. struct v4l2_jpegcompression

int quality

int APPn

int APP_len

char APP_data[60]

109

ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

int COM_len

char COM_data[60]

__u32 jpeg_markers See Table 2>.

Table 2. JPEG Markers Flags

V4L2_JPEG_MARKER_DHT (1<<3) Define Huffman Tables

V4L2_JPEG_MARKER_DQT (1<<4) Define Quantization Tables

V4L2_JPEG_MARKER_DRI (1<<5) Define Restart Interval

V4L2_JPEG_MARKER_COM (1<<6) Comment segment

V4L2_JPEG_MARKER_APP (1<<7) App segment, driver will always use APP0

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

This ioctl is not supported.

110

ioctl VIDIOC_G_MODULATOR,
VIDIOC_S_MODULATOR

Name
VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR — Get or set modulator attributes

Synopsis

int ioctl(int fd, int request, struct v4l2_modulator *argp);

int ioctl(int fd, int request, const struct v4l2_modulator *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

argp

Description
To query the attributes of a modulator applications initialize the index field and zero out the
reserved array of a struct v4l2_modulator and call the VIDIOC_G_MODULATOR ioctl with a pointer
to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index
is out of bounds. To enumerate all modulators applications shall begin at index zero, incrementing by
one until the driver returns EINVAL.

Modulators have two writable properties, an audio modulation set and the radio frequency. To
change the modulated audio subprograms, applications initialize the index and txsubchans fields
and the reserved array and call the VIDIOC_S_MODULATOR ioctl. Drivers may choose a different
audio modulation if the request cannot be satisfied. However this is a write-only ioctl, it does not
return the actual audio modulation selected.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

111

ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

Table 1. struct v4l2_modulator

__u32 index Identifies the modulator, set by the application.

__u8 name[32] Name of the modulator, a NUL-terminated ASCII
string. This information is intended for the user.

__u32 capability Modulator capability flags. No flags are defined
for this field, the tuner flags in struct v4l2_tuner
are used accordingly. The audio flags indicate the
ability to encode audio subprograms. They will
not change for example with the current video
standard.

__u32 rangelow The lowest tunable frequency in units of 62.5
KHz, or if the capability flag
V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz.

__u32 rangehigh The highest tunable frequency in units of 62.5
KHz, or if the capability flag
V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz.

__u32 txsubchans With this field applications can determine how
audio sub-carriers shall be modulated. It contains
a set of flags as defined in Table 2>. Note the
tuner rxsubchans flags are reused, but the
semantics are different. Video output devices are
assumed to have an analog or PCM audio input
with 1-3 channels. The txsubchans flags select
one or more channels for modulation, together
with some audio subprogram indicator, for
example a stereo pilot tone.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 2. Modulator Audio Transmission Flags

V4L2_TUNER_SUB_MONO 0x0001 Modulate channel 1 as mono audio, when the
input has more channels, a down-mix of channel 1
and 2. This flag does not combine with
V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_LANG1.

V4L2_TUNER_SUB_STEREO 0x0002 Modulate channel 1 and 2 as left and right channel
of a stereo audio signal. When the input has only
one channel or two channels and
V4L2_TUNER_SUB_SAP is also set, channel 1 is
encoded as left and right channel. This flag does
not combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_LANG1. When the driver does
not support stereo audio it shall fall back to mono.

112

ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

V4L2_TUNER_SUB_LANG1 0x0008 Modulate channel 1 and 2 as primary and
secondary language of a bilingual audio signal.
When the input has only one channel it is used for
both languages. It is not possible to encode the
primary or secondary language only. This flag
does not combine with V4L2_TUNER_SUB_MONO

or V4L2_TUNER_SUB_STEREO. If the hardware
does not support the respective audio matrix, or
the current video standard does not permit
bilingual audio the VIDIOC_S_MODULATOR ioctl
shall return an EINVAL error code and the driver
shall fall back to mono or stereo mode.

V4L2_TUNER_SUB_LANG2 0x0004 Same effect as V4L2_TUNER_SUB_LANG1.

V4L2_TUNER_SUB_SAP 0x0004 When combined with V4L2_TUNER_SUB_MONO

the first channel is encoded as mono audio, the
last channel as Second Audio Program. When the
input has only one channel it is used for both
audio tracks. When the input has three channels
the mono track is a down-mix of channel 1 and 2.
When combined with V4L2_TUNER_SUB_STEREO

channel 1 and 2 are encoded as left and right
stereo audio, channel 3 as Second Audio Program.
When the input has only two channels, the first is
encoded as left and right channel and the second
as SAP. When the input has only one channel it is
used for all audio tracks. It is not possible to
encode a Second Audio Program only. This flag
must combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_STEREO. If the hardware does
not support the respective audio matrix, or the
current video standard does not permit SAP the
VIDIOC_S_MODULATOR ioctl shall return an
EINVAL error code and driver shall fall back to
mono or stereo mode.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_modulator index is out of bounds.

113

ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

Name
VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT — Query or select the current video output

Synopsis

int ioctl(int fd, int request, int *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

argp

Description
To query the current video output applications call the VIDIOC_G_OUTPUT ioctl with a pointer to an
integer where the driver stores the number of the output, as in the struct v4l2_output index field.
This ioctl will fail only when there are no video outputs, returning the EINVAL error code.

To select a video output applications store the number of the desired output in an integer and call the
VIDIOC_S_OUTPUT ioctl with a pointer to this integer. Side effects are possible. For example outputs
may support different video standards, so the driver may implicitly switch the current standard. It is
good practice to select an output before querying or negotiating any other parameters.

Information about video outputs is available using the VIDIOC_ENUMOUTPUT ioctl.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The number of the video output is out of bounds, or there are no video outputs at all and this
ioctl is not supported.

114

ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

EBUSY

I/O is in progress, the output cannot be switched.

115

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

Name
VIDIOC_G_PARM, VIDIOC_S_PARM — Get or set streaming parameters

Synopsis

int ioctl(int fd, int request, v4l2_streamparm *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_PARM, VIDIOC_S_PARM

argp

Description
The current video standard determines a nominal number of frames per second. If less than this
number of frames is to be captured or output, applications can request frame skipping or duplicating
on the driver side. This is especially useful when using the read() or write(), which are not
augmented by timestamps or sequence counters, and to avoid unneccessary data copying.

Further these ioctls can be used to determine the number of buffers used internally by a driver in
read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM

ioctl, respectively. They take a pointer to a struct v4l2_streamparm which contains a union holding
separate parameters for input and output devices.

Table 1. struct v4l2_streamparm

enum v4l2_buf_typetype The buffer (stream) type, same as
struct v4l2_format type, set by the
application.

union parm

struct v4l2_captureparmcapture Parameters for capture devices, used
when type is
V4L2_BUF_TYPE_VIDEO_CAPTURE.

116

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

struct v4l2_outputparmoutput Parameters for output devices, used
when type is
V4L2_BUF_TYPE_VIDEO_OUTPUT.

__u8 raw_data[200] A place holder for future extensions and
custom (driver defined) buffer types
V4L2_BUF_TYPE_PRIVATE and higher.

Table 2. struct v4l2_captureparm

__u32 capability See Table 4>.

__u32 capturemode Set by drivers and applications, see Table 5>.

struct v4l2_fract timeperframe This is is the desired period between successive
frames captured by the driver, in seconds. The
field is intended to skip frames on the driver side,
saving I/O bandwidth.
Applications store here the desired frame period,
drivers return the actual frame period, which
must be greater or equal to the nominal frame
period determined by the current video standard
(struct v4l2_standard frameperiod field).
Changing the video standard (also implicitly by
switching the video input) may reset this
parameter to the nominal frame period. To reset
manually applications can just set this field to
zero.

Drivers support this function only when they set
the V4L2_CAP_TIMEPERFRAME flag in the
capability field.

__u32 extendedmode Custom (driver specific) streaming parameters.
When unused, applications and drivers must set
this field to zero. Applications using this field
should check the driver name and version, see
Section 1.2>.

__u32 readbuffers Applications set this field to the desired number of
buffers used internally by the driver in read()

mode. Drivers return the actual number of buffers.
When an application requests zero buffers, drivers
should just return the current setting rather than
the minimum or an error code. For details see
Section 3.1>.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 3. struct v4l2_outputparm

117

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

__u32 capability See Table 4>.

__u32 outputmode Set by drivers and applications, see Table 5>.

struct v4l2_fract timeperframe This is is the desired period between successive
frames output by the driver, in seconds.

The field is intended to repeat frames on the driver side in write() mode (in streaming mode timestamps can be used to throttle the output), saving I/O bandwidth. Applications store here the desired frame period, drivers return the actual frame period, which must be greater or equal to the nominal frame period determined by the current video standard (struct v4l2_standard frameperiod field). Changing the video standard (also implicitly by switching the video output) may reset this parameter to the nominal frame period. To reset manually applications can just set this field to zero. Drivers support this function only when they set the V4L2_CAP_TIMEPERFRAME flag in the capability field.

__u32 extendedmode Custom (driver specific) streaming parameters.
When unused, applications and drivers must set
this field to zero. Applications using this field
should check the driver name and version, see
Section 1.2>.

__u32 writebuffers Applications set this field to the desired number of
buffers used internally by the driver in write()

mode. Drivers return the actual number of buffers.
When an application requests zero buffers, drivers
should just return the current setting rather than
the minimum or an error code. For details see
Section 3.1>.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 4. Streaming Parameters Capabilites

V4L2_CAP_TIMEPERFRAME 0x1000 The frame skipping/repeating controlled by the
timeperframe field is supported.

Table 5. Capture Parameters Flags

118

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

V4L2_MODE_HIGHQUALITY 0x0001 High quality imaging mode. High quality mode
is intended for still imaging applications. The
idea is to get the best possible image quality that
the hardware can deliver. It is not defined how
the driver writer may achieve that; it will depend
on the hardware and the ingenuity of the driver
writer. High quality mode is a different mode
from the the regular motion video capture modes.
In high quality mode:• The driver may be able
to capture higher resolutions than for motion
capture.

• The driver may support fewer pixel formats
than motion capture (e.g. true color).

• The driver may capture and arithmetically
combine multiple successive fields or frames
to remove color edge artifacts and reduce the
noise in the video data.

• The driver may capture images in slices like
a scanner in order to handle larger format
images than would otherwise be possible.

• An image capture operation may be
significantly slower than motion capture.

• Moving objects in the image might have
excessive motion blur.

• Capture might only work through the
read() call.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

This ioctl is not supported.

119

ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

Name
VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY — Query or request the access priority
associated with a file descriptor

Synopsis

int ioctl(int fd, int request, enum v4l2_priority *argp);

int ioctl(int fd, int request, const enum v4l2_priority *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

argp

Pointer to an enum v4l2_priority type.

Description
To query the current access priority applications call the VIDIOC_G_PRIORITY ioctl with a pointer
to an enum v4l2_priority variable where the driver stores the current priority.

To request an access priority applications store the desired priority in an enum v4l2_priority variable
and call VIDIOC_S_PRIORITY ioctl with a pointer to this variable.

Table 1. enum v4l2_priority

V4L2_PRIORITY_UNSET 0

V4L2_PRIORITY_BACKGROUND 1 Lowest priority, usually applications running in
background, for example monitoring VBI
transmissions. A proxy application running in user
space will be necessary if multiple applications
want to read from a device at this priority.

V4L2_PRIORITY_INTERACTIVE 2

120

ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

V4L2_PRIORITY_DEFAULT 2 Medium priority, usually applications started and
interactively controlled by the user. For example
TV viewers, Teletext browsers, or just "panel"
applications to change the channel or video
controls. This is the default priority unless an
application requests another.

V4L2_PRIORITY_RECORD 3 Highest priority. Only one file descriptor can have
this priority, it blocks any other fd from changing
device properties. Usually applications which
must not be interrupted, like video recording.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The requested priority value is invalid, or the driver does not support access priorities.

EBUSY

Another application already requested higher priority.

121

ioctl VIDIOC_G_SLICED_VBI_CAP

Name
VIDIOC_G_SLICED_VBI_CAP — Query sliced VBI capabilities

Synopsis

int ioctl(int fd, int request, struct v4l2_sliced_vbi_cap *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_SLICED_VBI_CAP

argp

Description
To find out which data services are supported by a sliced VBI capture or output device, applications
can call the VIDIOC_G_SLICED_VBI_CAP ioctl. It takes a pointer to a struct v4l2_sliced_vbi_cap
which is filled by the driver.

Table 1. struct v4l2_sliced_vbi_cap

__u16 service_set A set of all data services supported by the driver. Equal to the union of all elements of the service_lines array.

__u16 service_lines[2][24] Each element of this array contains a set of data services the hardware can look for or insert into a particular scan line. Data services are defined in Table 2>. Array indices map to ITU-R line numbers (see also Figure 4-2> and Figure 4-3>) as follows:

Element 525 line systems625 line systems

service_lines[0][1] 1 1

service_lines[0][23]23 23

service_lines[1][1]264 314

service_lines[1][23]286 336

The number of VBI lines the hardware can capture or output per frame, or the number of services it can identify on a given line may be limited. For example on PAL line 16 the hardware may be able to look for a VPS or Teletext signal, but not both at the same time. Applications can learn about these limits using the VIDIOC_S_FMT ioctl as described in Section 4.7>.

122

ioctl VIDIOC_G_SLICED_VBI_CAP

Drivers must set service_lines[0][0] and service_lines[1][0] to zero.

__u32 reserved[4] This array is reserved for future extensions. Drivers must set it to zero.

Table 2. Sliced VBI services

Symbol Value Reference Lines, usually Payload

V4L2_SLICED_TELETEXT_B

(Teletext System B)
0x0001 TELETEXT>PAL/SECAM line 7-22,

320-335 (second field
7-22)

Last 42 of the 45 byte
Teletext packet, that is
without clock run-in and
framing code, lsb first
transmitted.

V4L2_SLICED_VPS 0x0400 VPS> PAL line 16 Byte number 3 to 15
according to Figure 9 of
ETS 300 231, lsb first
transmitted.

V4L2_SLICED_CAPTION_5250x1000 EIA608> NTSC line 21, 284
(second field 21)

Two bytes in
transmission order,
including parity bit, lsb
first transmitted.

V4L2_SLICED_WSS_6250x4000 WSS> PAL/SECAM line 23 Byte 0 1
msb lsb msb lsb

Bit 7 6 5 4 3 2 1 0 x x 13 12 11 10 9

V4L2_SLICED_VBI_5250x1000 Set of services applicable to 525 line systems.

V4L2_SLICED_VBI_6250x4401 Set of services applicable to 625 line systems.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The device does not support sliced VBI capturing or output.

123

ioctl VIDIOC_G_STD, VIDIOC_S_STD

Name
VIDIOC_G_STD, VIDIOC_S_STD — Query or select the video standard of the current input

Synopsis

int ioctl(int fd, int request, v4l2_std_id *argp);

int ioctl(int fd, int request, const v4l2_std_id *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_STD, VIDIOC_S_STD

argp

Description
To query and select the current video standard applications use the VIDIOC_G_STD and
VIDIOC_S_STD ioctls which take a pointer to a v4l2_std_id type as argument. VIDIOC_G_STD can
return a single flag or a set of flags as in struct v4l2_standard field id. The flags must be
unambiguous such that they appear in only one enumerated v4l2_standard structure.

VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not return the actual new
standard as VIDIOC_G_STD does. When no flags are given or the current input does not support the
requested standard the driver returns an EINVAL error code. When the standard set is ambiguous
drivers may return EINVAL or choose any of the requested standards.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

This ioctl is not supported, or the VIDIOC_S_STD parameter was unsuitable.

124

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

Name
VIDIOC_G_TUNER, VIDIOC_S_TUNER — Get or set tuner attributes

Synopsis

int ioctl(int fd, int request, struct v4l2_tuner *argp);

int ioctl(int fd, int request, const struct v4l2_tuner *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_G_TUNER, VIDIOC_S_TUNER

argp

Description
To query the attributes of a tuner applications initialize the index field and zero out the reserved
array of a struct v4l2_tuner and call the VIDIOC_G_TUNER ioctl with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds.
To enumerate all tuners applications shall begin at index zero, incrementing by one until the driver
returns EINVAL.

Tuners have two writable properties, the audio mode and the radio frequency. To change the audio
mode, applications initialize the index, audmode and reserved fields and call the
VIDIOC_S_TUNER ioctl. This will not change the current tuner, which is determined by the current
video input. Drivers may choose a different audio mode if the requested mode is invalid or
unsupported. Since this is a write-only ioctl, it does not return the actually selected audio mode.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

Table 1. struct v4l2_tuner

__u32 index Identifies the tuner, set by the application.

__u8 name[32] Name of the tuner, a NUL-terminated ASCII string. This information is intended for the user.

enum v4l2_tuner_type type Type of the tuner, see Table 2>.

125

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

__u32 capability Tuner capability flags, see Table 3>. Audio flags indicate the ability to decode audio subprograms. They will not change, for example with the current video standard. When the structure refers to a radio tuner only the V4L2_TUNER_CAP_LOW and V4L2_TUNER_CAP_STEREO flags can be set.

__u32 rangelow The lowest tunable frequency in units of 62.5 kHz, or if the capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz.

__u32 rangehigh The highest tunable frequency in units of 62.5 kHz, or if the capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz.

__u32 rxsubchans Some tuners or audio decoders can determine the received audio subprograms by analyzing audio carriers, pilot tones or other indicators. To pass this information drivers set flags defined in Table 4> in this field. For example:

V4L2_TUNER_SUB_MONO receiving mono audio

STEREO | SAP receiving stereo audio and a secondary audio program

MONO | STEREO receiving mono or stereo audio, the hardware cannot distinguish

LANG1 | LANG2 receiving bilingual audio

MONO | STEREO | LANG1 |

LANG2

receiving mono, stereo or bilingual audio

When the V4L2_TUNER_CAP_STEREO, _LANG1, _LANG2 or _SAP flag is cleared in the capability field, the corresponding V4L2_TUNER_SUB_ flag must not be set here. This field is valid only if this is the tuner of the current video input, or when the structure refers to a radio tuner.

__u32 audmode The selected audio mode, see Table 5> for valid values. The audio mode does not affect audio subprogram detection, and like a control it does not automatically change unless the requested mode is invalid or unsupported. See Table 6> for possible results when the selected and received audio programs do not match. Currently this is the only field of struct v4l2_tuner applications can change.

__u32 signal The signal strength if known, ranging from 0 to 65535. Higher values indicate a better signal.

__s32 afc Automatic frequency control: When the afc value is negative, the frequency is too low, when positive too high.

__u32 reserved[4] Reserved for future extensions. Drivers and applications must set the array to zero.

Table 2. enum v4l2_tuner_type

V4L2_TUNER_RADIO 1

V4L2_TUNER_ANALOG_TV 2

Table 3. Tuner and Modulator Capability Flags

V4L2_TUNER_CAP_LOW 0x0001 When set, tuning frequencies are expressed in
units of 62.5 Hz, otherwise in units of 62.5 kHz.

V4L2_TUNER_CAP_NORM 0x0002 This is a multi-standard tuner; the video standard
can or must be switched. (B/G PAL tuners for
example are typically not considered
multi-standard because the video standard is
automatically determined from the frequency
band.) The set of supported video standards is
available from the struct v4l2_input pointing to
this tuner, see the description of ioctl
VIDIOC_ENUMINPUT for details. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.

V4L2_TUNER_CAP_STEREO 0x0010 Stereo audio reception is supported.

V4L2_TUNER_CAP_LANG1 0x0040 Reception of the primary language of a bilingual
audio program is supported. Bilingual audio is a
feature of two-channel systems, transmitting the
primary language monaural on the main audio
carrier and a secondary language monaural on a
second carrier. Only V4L2_TUNER_ANALOG_TV

tuners can have this capability.

126

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

V4L2_TUNER_CAP_LANG2 0x0020 Reception of the secondary language of a
bilingual audio program is supported. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.

V4L2_TUNER_CAP_SAP 0x0020 Reception of a secondary audio program is
supported. This is a feature of the BTSC system
which accompanies the NTSC video standard.
Two audio carriers are available for mono or
stereo transmissions of a primary language, and
an independent third carrier for a monaural
secondary language. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.
Note the V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_SAP flags are synonyms.
V4L2_TUNER_CAP_SAP applies when the tuner
supports the V4L2_STD_NTSC_M video standard.

Table 4. Tuner Audio Reception Flags

V4L2_TUNER_SUB_MONO 0x0001 The tuner receives a mono audio signal.

V4L2_TUNER_SUB_STEREO 0x0002 The tuner receives a stereo audio signal.

V4L2_TUNER_SUB_LANG1 0x0008 The tuner receives the primary language of a
bilingual audio signal. Drivers must clear this flag
when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_LANG2 0x0004 The tuner receives the secondary language of a
bilingual audio signal (or a second audio
program).

V4L2_TUNER_SUB_SAP 0x0004 The tuner receives a Second Audio Program. Note
the V4L2_TUNER_SUB_LANG2 and
V4L2_TUNER_SUB_SAP flags are synonyms. The
V4L2_TUNER_SUB_SAP flag applies when the
current video standard is V4L2_STD_NTSC_M.

Table 5. Tuner Audio Modes

V4L2_TUNER_MODE_MONO 0 Play mono audio. When the tuner receives a
stereo signal this a down-mix of the left and right
channel. When the tuner receives a bilingual or
SAP signal this mode selects the primary
language.

V4L2_TUNER_MODE_STEREO 1 Play stereo audio. When the tuner receives
bilingual audio it may play different languages on
the left and right channel or the primary language
on both channels. When it receives no stereo
signal or does not support stereo reception the
driver shall behave as in mono mode.

127

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

V4L2_TUNER_MODE_LANG1 3 Play the primary language, mono or stereo. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

V4L2_TUNER_MODE_LANG2 2 Play the secondary language, mono. When the
tuner receives no bilingual audio or SAP, or their
reception is not supported the driver shall fall
back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

V4L2_TUNER_MODE_SAP 2 Play the Second Audio Program. When the tuner
receives no bilingual audio or SAP, or their
reception is not supported the driver shall fall
back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode. Note the V4L2_TUNER_MODE_LANG2 and
V4L2_TUNER_MODE_SAP are synonyms.

Table 6. Tuner Audio Matrix

Selected V4L2_TUNER_MODE_

Received
V4L2_TUNER_SUB_

MONO STEREO LANG1 LANG2 / SAP

MONO Mono Mono/Mono Mono Mono

MONO | SAP Mono Mono/Mono Mono SAP

STEREO L+R L/R Stereo L/R
(preferred) or Mono
L+R

Stereo L/R
(preferred) or Mono
L+R

STEREO | SAP L+R L/R Stereo L/R
(preferred) or Mono
L+R

SAP

LANG1 | LANG2 Language 1 Lang1/Lang2
(preferred) or
Lang1/Lang1

Language 1 Language 2

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_tuner index is out of bounds.

128

ioctl VIDIOC_LOG_STATUS

Name
VIDIOC_LOG_STATUS — Log driver status information

Synopsis

int ioctl(int fd, int request);

Description
As the video/audio devices become more complicated it becomes harder to debug problems. When
this ioctl is called the driver will output the current device status to the kernel log. This is particular
useful when dealing with problems like no sound, no video and incorrectly tuned channels. Also
many modern devices autodetect video and audio standards and this ioctl will report what the device
thinks what the standard is. Mismatches may give an indication where the problem is.

This ioctl is optional and not all drivers support it. It was introduced in Linux 2.6.15.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The driver does not support this ioctl.

129

ioctl VIDIOC_OVERLAY

Name
VIDIOC_OVERLAY — Start or stop video overlay

Synopsis

int ioctl(int fd, int request, const int *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_OVERLAY

argp

Description
This ioctl is part of the video overlay I/O method. Applications call VIDIOC_OVERLAY to start or
stop the overlay. It takes a pointer to an integer which must be set to zero by the application to stop
overlay, to one to start.

Drivers do not support VIDIOC_STREAMON or VIDIOC_STREAMOFF with
V4L2_BUF_TYPE_VIDEO_OVERLAY.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

Video overlay is not supported, or the parameters have not been set up. See Section 4.2> for the
necessary steps.

130

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name
VIDIOC_QBUF, VIDIOC_DQBUF — Exchange a buffer with the driver

Synopsis

int ioctl(int fd, int request, struct v4l2_buffer *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_QBUF, VIDIOC_DQBUF

argp

Description
Applications call the VIDIOC_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer in
the driver’s incoming queue. The semantics depend on the selected I/O method.

To enqueue a memory mapped buffer applications set the type field of a struct v4l2_buffer to the
same buffer type as previously struct v4l2_format type and struct v4l2_requestbuffers type, the
memory field to V4L2_MEMORY_MMAP and the index field. Valid index numbers range from zero to
the number of buffers allocated with VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus
one. The contents of the struct v4l2_buffer returned by a VIDIOC_QUERYBUF ioctl will do as well.
When the buffer is intended for output (type is V4L2_BUF_TYPE_VIDEO_OUTPUT or
V4L2_BUF_TYPE_VBI_OUTPUT) applications must also initialize the bytesused, field and
timestamp fields. See Section 3.5> for details. When VIDIOC_QBUF is called with a pointer to this
structure the driver sets the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_QUEUED flags and
clears the V4L2_BUF_FLAG_DONE flag in the flags field, or it returns an EINVAL error code.

To enqueue a user pointer buffer applications set the type field of a struct v4l2_buffer to the same
buffer type as previously struct v4l2_format type and struct v4l2_requestbuffers type, the memory
field to V4L2_MEMORY_USERPTR and the m.userptr field to the address of the buffer and length

to its size. When the buffer is intended for output additional fields must be set as above. When
VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED
flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the flags field,
or it returns an error code. This ioctl locks the memory pages of the buffer in physical memory, they

131

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

cannot be swapped out to disk. Buffers remain locked until dequeued, until the VIDIOC_STREAMOFF
or VIDIOC_REQBUFS ioctl are called, or until the device is closed.

Applications call the VIDIOC_DQBUF ioctl to dequeue a filled (capturing) or displayed (output)
buffer from the driver’s outgoing queue. They just set the type and memory fields of a
struct v4l2_buffer as above, when VIDIOC_DQBUF is called with a pointer to this structure the driver
fills the remaining fields or returns an error code.

By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK
flag was given to the open() function, VIDIOC_DQBUF returns immediately with an EAGAIN error
code when no buffer is available.

The v4l2_buffer structure is specified in Section 3.5>.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EAGAIN

Non-blocking I/O has been selected using O_NONBLOCK and no buffer was in the outgoing
queue.

EINVAL

The buffer type is not supported, or the index is out of bounds, or no buffers have been
allocated yet, or the userptr or length are invalid.

ENOMEM

Insufficient memory to enqueue a user pointer buffer.

EIO

VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary problems like signal
loss. Note the driver might dequeue an (empty) buffer despite returning an error, or even stop
capturing.

132

ioctl VIDIOC_QUERYBUF

Name
VIDIOC_QUERYBUF — Query the status of a buffer

Synopsis

int ioctl(int fd, int request, struct v4l2_buffer *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_QUERYBUF

argp

Description
This ioctl is part of the memory mapping I/O method. It can be used to query the status of a buffer at
any time after buffers have been allocated with the VIDIOC_REQBUFS ioctl.

Applications set the type field of a struct v4l2_buffer to the same buffer type as previously
struct v4l2_format type and struct v4l2_requestbuffers type, and the index field. Valid index
numbers range from zero to the number of buffers allocated with VIDIOC_REQBUFS

(struct v4l2_requestbuffers count) minus one. After calling VIDIOC_QUERYBUF with a pointer to
this structure drivers return an error code or fill the rest of the structure.

In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flags will be valid. The memory field will be set to V4L2_MEMORY_MMAP,
the m.offset contains the offset of the buffer from the start of the device memory, the length field
its size. The driver may or may not set the remaining fields and flags, they are meaningless in this
context.

The v4l2_buffer structure is specified in Section 3.5>.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

133

ioctl VIDIOC_QUERYBUF

EINVAL

The buffer type is not supported, or the index is out of bounds.

134

ioctl VIDIOC_QUERYCAP

Name
VIDIOC_QUERYCAP — Query device capabilities

Synopsis

int ioctl(int fd, int request, struct v4l2_capability *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_QUERYCAP

argp

Description
All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel devices
compatible with this specification and to obtain information about individual hardware capabilities.
The ioctl takes a pointer to a struct v4l2_capability which is filled by the driver. When the driver is
not compatible with this specification the ioctl returns the EINVAL error code.

Table 1. struct v4l2_capability

__u8 driver[16] Name of the driver, a unique NUL-terminated
ASCII string. For example: "bttv". Driver
specific applications shall use this information to
verify the driver identity. It is also useful to work
around known bugs, or to print the driver name
and version in an error report to aid debugging.
The driver version is stored in the version field.
Storing strings in fixed sized arrays is bad
practice but unavoidable here. Drivers and
applications should take precautions to never
read or write beyond the end of the array and to
properly terminate the strings.

135

ioctl VIDIOC_QUERYCAP

__u8 card[32] Name of the device, a NUL-terminated ASCII
string. For example: "Yoyodyne TV/FM".
Remember that one driver may support different
brands or models of video hardware. This
information can be used to build a menu of
available devices for a device-select user
interface. Since drivers may support multiple
installed devices this name should be combined
with the bus_info string to avoid ambiguities.

__u8 bus_info[32] Location of the device in the system, a
NUL-terminated ASCII string. For example: "PCI
Slot 4". This information is intended for the user,
to distinguish multiple identical devices. If no
such information is available the field may simply
count the devices controlled by the driver, or
contain the empty string (bus_info[0] = 0).
[pci_dev->slot_name example].

__u32 version Version number of the driver. Together with the
driver field this identifies a particular driver.
The version number is formatted using the
KERNEL_VERSION() macro:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c)) __u32 version = KERNEL_VERSION(0, 8, 1); printf ("Version: %u.%u.%u\n", (version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);

__u32 capabilities Device capabilities, see Table 2>.

__u32 reserved[4] Reserved for future extensions. Drivers must set
this array to zero.

Table 2. Device Capabilities Flags

V4L2_CAP_VIDEO_CAPTURE 0x00000001The device supports the video capture interface.

V4L2_CAP_VIDEO_OUTPUT 0x00000002The device supports the video output interface.

V4L2_CAP_VIDEO_OVERLAY 0x00000004The device supports the video overlay interface.
Overlay typically stores captured images directly
in the video memory of a graphics card, with
support for clipping.

V4L2_CAP_VBI_CAPTURE 0x00000010The device supports the VBI capture interface, see
Section 4.6>, Section 4.7>.

V4L2_CAP_VBI_OUTPUT 0x00000020The device supports the VBI output interface, see
Section 4.6>, Section 4.7>.

V4L2_CAP_RDS_CAPTURE 0x00000100[to be defined]

V4L2_CAP_TUNER 0x00010000The device has some sort of tuner or modulator to
receive or emit RF-modulated video signals. For
more information see Section 1.6>.

136

ioctl VIDIOC_QUERYCAP

V4L2_CAP_AUDIO 0x00020000The device has audio inputs or outputs. For more
information see Section 1.5>. It may or may not
support PCM sampling or output, this function
must be implemented as ALSA or OSS PCM
interface.

V4L2_CAP_READWRITE 0x01000000The device supports the read() and/or write() I/O
methods.

V4L2_CAP_ASYNCIO 0x02000000The device supports the asynchronous I/O
methods.

V4L2_CAP_STREAMING 0x04000000The device supports the streaming I/O method.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The kernel device is not compatible with this specification.

137

ioctl VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU

Name
VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU — Enumerate controls and menu control items

Synopsis

int ioctl(int fd, int request, struct v4l2_queryctrl *argp);

int ioctl(int fd, int request, struct v4l2_querymenu *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU

argp

Description
To query the attributes of a control applications set the id field of a struct v4l2_queryctrl and call the
VIDIOC_QUERYCTRL ioctl with a pointer to this structure. The driver fills the rest of the structure or
returns an EINVAL error code when the id is invalid.

It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with successive id values
starting from V4L2_CID_BASE up to and exclusive V4L2_CID_BASE_LASTP1, or starting from
V4L2_CID_PRIVATE_BASE until the driver returns EINVAL. When the
V4L2_CTRL_FLAG_DISABLED flag is set in the flags field, this control is permanently disabled and
should be ignored by the application.1

Additional information is required for menu controls, the name of menu items. To query them
applications set the id and index fields of struct v4l2_querymenu and call the
VIDIOC_QUERYMENU ioctl with a pointer to this structure. The driver fills the rest of the structure or
returns an EINVAL error code when the id or index is invalid. Menu items are enumerated by
calling VIDIOC_QUERYMENU with successive index values from struct v4l2_queryctrl minimum (0)
to maximum, inclusive.

Table 1. struct v4l2_queryctrl

138

ioctl VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU

__u32 id Identifies the control, set by the application. See
Table 1-1> for predefined IDs.

enum v4l2_ctrl_type type Type of control, see Table 3>.

__u8 name[32] Name of the control, a NUL-terminated ASCII
string. This information is intended for the user.

__s32 minimum Minimum value, inclusive. This field is mostly
useful to define a lower bound for integer
controls. Note the value is signed.

__s32 maximum Maximum value, inclusive. Note the value is
signed.

__s32 step Generally drivers should not scale hardware
control values. It may be necessary for example
when the name or id imply a particular unit and
the hardware actually accepts only multiples of
said unit. If so, drivers must take care values are
properly rounded when scaling, such that errors
will not accumulate on repeated read-write
cycles.
This field reports the smallest change of an
integer control actually affecting hardware. Often
the information is needed when the user can
change controls by keyboard or GUI buttons,
rather than a slider. When for example a
hardware register accepts values 0-511 and the
driver reports 0-65535, step should be 128.

Note although signed, the step value is supposed
to be always positive.

__s32 default_value The default value of the control. Drivers reset
controls only when the driver is loaded, not later,
in particular not when the open() is called.

__u32 flags Control flags, see Table 4>.

__u32 reserved[2] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. struct v4l2_querymenu

__u32 id Identifies the control, set by the application from
the respective struct v4l2_queryctrl id.

__u32 index Index of the menu item, starting at zero, set by the
application.

__u8 name[32] Name of the menu item, a NUL-terminated ASCII
string. This information is intended for the user.

__u32 reserved Reserved for future extensions. Drivers must set
the array to zero.

139

ioctl VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU

Table 3. enum v4l2_ctrl_type

Type
minimumstepmaximum

Description

V4L2_CTRL_TYPE_INTEGER low
value

in-
cre-
ment
(pos-
i-
tive)
[__u32?]

high
value

An integer-valued control ranging from minimum to
maximum inclusive. The step value indicates the
increment between values which are actually different
on the hardware.

V4L2_CTRL_TYPE_BOOLEAN 0 1 1 A boolean-valued control. Zero corresponds to
"disabled", and one means "enabled".

V4L2_CTRL_TYPE_MENU 0 1 N-1 The control has a menu of N choices. The names of the
menu items can be enumerated with the
VIDIOC_QUERYMENU ioctl.

V4L2_CTRL_TYPE_BUTTON 0 0 0 A control which performs an action when set. Drivers
must ignore the value passed with VIDIOC_S_CTRL

and return an EINVAL error code on a
VIDIOC_G_CTRL attempt.

Table 4. Control Flags

V4L2_CTRL_FLAG_DISABLED 0x0001 This control is permanently disabled and should
be ignored by the application. An attempt to
change this control results in an EINVAL error
code.

V4L2_CTRL_FLAG_GRABBED 0x0002 This control is temporarily unchangeable, for
example because another application took over
control of the respective resource. Such controls
may be displayed specially in a user interface. An
attempt to change a "grabbed" control results in
an EBUSY error code.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id or index is invalid.

140

Notes
1. V4L2_CTRL_FLAG_DISABLED was intended for two purposes: Drivers can skip

predefined controls not supported by the hardware (although returning

EINVAL would do as well), or disable predefined and custom controls

after hardware detection without the trouble of reordering control

arrays and indices.

ioctl VIDIOC_QUERYSTD

Name
VIDIOC_QUERYSTD — Sense the video standard received by the current input

Synopsis

int ioctl(int fd, int request, v4l2_std_id *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_QUERYSTD

argp

Description
The hardware may be able to detect the current video standard automatically. To do so, applications
call VIDIOC_QUERYSTD with a pointer to a v4l2_std_id type. The driver stores here a set of
candidates, this can be a single flag or a set of supported standards if for example the hardware can
only distinguish between 50 and 60 Hz systems. When detection is not possible or fails, the set must
contain all standards supported by the current video input or output.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

141

ioctl VIDIOC_QUERYSTD

EINVAL

This ioctl is not supported.

142

ioctl VIDIOC_REQBUFS

Name
VIDIOC_REQBUFS — Initiate Memory Mapping or User Pointer I/O

Synopsis

int ioctl(int fd, int request, struct v4l2_requestbuffers *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_REQBUFS

argp

Description
This ioctl is used to initiate memory mapped or user pointer I/O. Memory mapped buffers are
located in device memory and must be allocated with this ioctl before they can be mapped into the
application’s address space. User buffers are allocated by applications themselves, and this ioctl is
merely used to switch the driver into user pointer I/O mode.

To allocate device buffers applications initialize three fields of a v4l2_requestbuffers structure. They
set the type field to the respective stream or buffer type, the count field to the desired number of
buffers, and memory must be set to V4L2_MEMORY_MMAP. When the ioctl is called with a pointer to
this structure the driver attempts to allocate the requested number of buffers and stores the actual
number allocated in the count field. It can be smaller than the number requested, even zero, when
the driver runs out of free memory. A larger number is possible when the driver requires more
buffers to function correctly.1 When memory mapping I/O is not supported the ioctl returns an
EINVAL error code.

Applications can call VIDIOC_REQBUFS again to change the number of buffers, however this cannot
succeed when any buffers are still mapped. A count value of zero frees all buffers, after aborting or
finishing any DMA in progress, an implicit VIDIOC_STREAMOFF.

To negotiate user pointer I/O, applications initialize only the type field and set memory to
V4L2_MEMORY_USERPTR. When the ioctl is called with a pointer to this structure the driver prepares
for user pointer I/O, when this I/O method is not supported the ioctl returns an EINVAL error code.

143

ioctl VIDIOC_REQBUFS

Table 1. struct v4l2_requestbuffers

__u32 count The number of buffers requested or granted. This
field is only used when memory is set to
V4L2_MEMORY_MMAP.

enum v4l2_buf_type type Type of the stream or buffers, this is the same as
the struct v4l2_format type field. See Table 3-2>
for valid values.

enum v4l2_memory memory Applications set this field to V4L2_MEMORY_MMAP

or V4L2_MEMORY_USERPTR.

__u32 reserved[32] A place holder for future extensions and custom
(driver defined) buffer types
V4L2_BUF_TYPE_PRIVATE and higher.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EBUSY

The driver supports multiple opens and I/O is already in progress, or reallocation of buffers was
attempted although one or more are still mapped.

EINVAL

The buffer type (type field) or the requested I/O method (memory) is not supported.

144

Notes
1. For example video output requires at least two buffers, one displayed and one filled by the

application.

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name
VIDIOC_STREAMON, VIDIOC_STREAMOFF — Start or stop streaming I/O

Synopsis

int ioctl(int fd, int request, const int *argp);

Arguments

fd

File descriptor returned by open().

request

VIDIOC_STREAMON, VIDIOC_STREAMOFF

argp

Description
The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture or output process
during streaming (memory mapping or user pointer) I/O.

Specifically the capture hardware is disabled and no input buffers are filled (if there are any empty
buffers in the incoming queue) until VIDIOC_STREAMON has been called. Accordingly the output
hardware is disabled, no video signal is produced until VIDIOC_STREAMON has been called. The
ioctl will succeed only when at least one output buffer is in the incoming queue.

The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress, unlocks any
user pointer buffers locked in physical memory, and it removes all buffers from the incoming and
outgoing queues. That means all images captured but not dequeued yet will be lost, likewise all
images enqueued for output but not transmitted yet. I/O returns to the same state as after calling
VIDIOC_REQBUFS and can be restarted accordingly.

Both ioctls take a pointer to an integer, the desired buffer or stream type. This is the same as
struct v4l2_requestbuffers type.

145

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Note applications can be preempted for unknown periods right before or after the
VIDIOC_STREAMON or VIDIOC_STREAMOFF calls, there is no notion of starting or stopping "now".
Buffer timestamps can be used to synchronize with other events.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

Streaming I/O is not supported, the buffer type is not supported, or no buffers have been
allocated (memory mapping) or enqueued (output) yet.

146

V4L2 mmap()

Name
v4l2-mmap — Map device memory into application address space

Synopsis

#include <unistd.h>

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t
offset);

Arguments

start

Map the buffer to this address in the application’s address space. When the MAP_FIXED flag is
specified, start must be a multiple of the pagesize and mmap will fail when the specified
address cannot be used. Use of this option is discouraged; applications should just specify a
NULL pointer here.

length

Length of the memory area to map. This must be the same value as returned by the driver in the
struct v4l2_buffer length field.

prot

The prot argument describes the desired memory protection. It must be set to PROT_READ |
PROT_WRITE, indicating pages may be read and written. This is a technicality independent of
the device type and direction of data exchange. Note device memory accesses may incur a
performance penalty. It can happen when writing to capture buffers, when reading from output
buffers, or always. When the application intends to modify buffers, other I/O methods may be
more efficient.

flags

The flags parameter specifies the type of the mapped object, mapping options and whether
modifications made to the mapped copy of the page are private to the process or are to be shared
with other references.

MAP_FIXED requests that the driver selects no other address than the one specified. If the
specified address cannot be used, mmap will fail. If MAP_FIXED is specified, start must be a
multiple of the pagesize. Use of this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows to share this
mapping with all other processes that map this object. MAP_PRIVATE requests copy-on-write
semantics. We recommend to set MAP_SHARED. The MAP_PRIVATE, MAP_DENYWRITE,
MAP_EXECUTABLE and MAP_ANON flags should not be set.

147

V4L2 mmap()

fd

File descriptor returned by open().

offset

Offset of the buffer in device memory. This must be the same value as returned by the driver in
the struct v4l2_buffer m union offset field.

Description
The mmap() function asks to map length bytes starting at offset in the memory of the device
specified by fd into the application address space, preferably at address start. This latter address is
a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the VIDIOC_QUERYBUF ioctl. Buffers must be
allocated with the VIDIOC_REQBUFS ioctl before they can be queried.

To unmap buffers the munmap() function is used.

Return Value
On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED (-1) is returned,
and the errno variable is set appropriately. Possible error codes are:

EBADF

fd is not a valid file descriptor.

EACCESS

fd is not open for reading and writing.

EINVAL

The start or length or offset are not suitable. (E.g., they are too large, or not aligned on a
PAGESIZE boundary.) Or no buffers have been allocated with the VIDIOC_REQBUFS ioctl.

ENOMEM

No memory is available.

148

V4L2 munmap()

Name
v4l2-munmap — Unmap device memory

Synopsis

#include <unistd.h>

#include <sys/mman.h>

int munmap(void *start, size_t length);

Arguments

start

Address of the mapped buffer as returned by the mmap() function.

length

Length of the mapped buffer. This must be the same value as given to mmap() and returned by
the driver in the struct v4l2_buffer length field.

Description
Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

Return Value
On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:

EINVAL

The start or length is incorrect, or no buffers have been mapped yet.

149

V4L2 open()

Name
v4l2-open — Open a V4L2 device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags);

Arguments

device_name

Device to be opened.

flags

Open flags. Access mode must be O_RDWR. This is just a technicality, input devices still support
only reading and output devices only writing.

When the O_NONBLOCK flag is given, the read() function and the VIDIOC_DQBUF ioctl will
return the EAGAIN error code when no data is available or no buffer is in the driver outgoing
queue, otherwise these functions block until data becomes available. All V4L2 drivers
exchanging data with applications must support the O_NONBLOCK flag.

Other flags have no effect.

Description
To open a V4L2 device applications call open() with the desired device name. This function has no
side effects; all data format parameters, current input or output, control values or other properties
remain unchanged. At the first open() call after loading the driver they will be reset to default
values, drivers are never in an undefined state.

Return Value
On success open returns the new file descriptor. On error -1 is returned, and the errno variable is
set appropriately. Possible error codes are:

EACCES

The caller has no permission to access the device.

EBUSY

The driver does not support multiple opens and the device is already in use.

150

V4L2 open()

ENXIO

No device corresponding to this device special file exists.

ENOMEM

Insufficient kernel memory was available.

EMFILE

The process already has the maximum number of files open.

ENFILE

The limit on the total number of files open on the system has been reached.

151

V4L2 poll()

Name
v4l2-poll — Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Description
All drivers implementing the read() or write() function or streaming I/O must also support the
poll() function. See the poll() manual page for details.

152

V4L2 read()

Name
v4l2-read — Read from a V4L2 device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

Arguments

fd

File descriptor returned by open().

buf

count

Description
read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf.
The layout of the data in the buffer is discussed in the respective device interface section, see ##. If
count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX,
the result is unspecified. Regardless of the count value each read() call will provide at most one
frame (two fields) worth of data.

By default read() blocks until data becomes available. When the O_NONBLOCK flag was given to
the open() function it returns immediately with an EAGAIN error code when no data is available.
The select() or poll() functions can always be used to suspend execution until data becomes
available. All drivers supporting the read() function must also support select() and poll().

Drivers can implement read functionality in different ways, using a single or multiple buffers and
discarding the oldest or newest frames once the internal buffers are filled.

read() never returns a "snapshot" of a buffer being filled. Using a single buffer the driver will stop
capturing when the application starts reading the buffer until the read is finished. Thus only the
period of the vertical blanking interval is available for reading, or the capture rate must fall below the
nominal frame rate of the video standard.

The behavior of read() when called during the active picture period or the vertical blanking
separating the top and bottom field depends on the discarding policy. A driver discarding the oldest
frames keeps capturing into an internal buffer, continuously overwriting the previously, not read
frame, and returns the frame being received at the time of the read() call as soon as it is complete.

153

V4L2 read()

A driver discarding the newest frames stops capturing until the next read() call. The frame being
received at read() time is discarded, returning the following frame instead. Again this implies a
reduction of the capture rate to one half or less of the nominal frame rate. An example of this model
is the video read mode of the "bttv" driver, initiating a DMA to user memory when read() is called
and returning when the DMA finished.

In the multiple buffer model drivers maintain a ring of internal buffers, automatically advancing to
the next free buffer. This allows continuous capturing when the application can empty the buffers
fast enough. Again, the behavior when the driver runs out of free buffers depends on the discarding
policy.

Applications can get and set the number of buffers used internally by the driver with the streaming
parameter ioctls, see ##streaming-par. They are optional, however. The discarding policy is not
reported and cannot be changed. For minimum requirements see the respective device interface
section in ##.

Return Value
On success, the number of bytes read is returned. It is not an error if this number is smaller than the
number of bytes requested, or the amount of data required for one frame. This may happen for
example because read() was interrupted by a signal. On error, -1 is returned, and the errno
variable is set appropriately. In this case the next read will start at the beginning of a new frame.
Possible error codes are:

EAGAIN

Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately
available for reading.

EBADF

fd is not a valid file descriptor or is not open for reading, or the process already has the
maximum number of files open.

EBUSY

The driver does not support multiple read streams and the device is already in use.

EFAULT

buf is outside your accessible address space.

EINTR

The call was interrupted by a signal before any data was read.

EIO

I/O error. This indicates some hardware problem or a failure to communicate with a remote
device (USB camera etc.).

EINVAL

The read() function is not supported by this driver, not on this device, or generally not on this
type of device.

154

V4L2 select()

Name
v4l2-select — Synchronous I/O multiplexing

Synopsis

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description
All drivers implementing the read() or write() function or streaming I/O must also support the
select() function. See the select() manual page for details.

155

V4L2 write()

Name
v4l2-write — Write to a V4L2 device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count);

Arguments

fd

File descriptor returned by open().

buf

count

Description
write() writes up to count bytes to the device referenced by the file descriptor fd from the buffer
starting at buf. If count is zero, 0 will be returned without causing any other effect.
[implementation tbd]

When the application does not provide more data in time, the previous frame is displayed again.

Return Value
On success, the number of bytes written are returned. Zero indicates nothing was written. [tbd] On
error, -1 is returned, and the errno variable is set appropriately. In this case the next write will start
at the beginning of a new frame. Possible error codes are:

EAGAIN

Non-blocking I/O has been selected using O_NONBLOCK and no buffer space was available
to write the data immediately. [tbd]

EBADF

fd is not a valid file descriptor or is not open for writing.

156

V4L2 write()

EBUSY

The driver does not support multiple write streams and the device is already in use.

EFAULT

buf is outside your accessible address space.

EINTR

The call was interrupted by a signal before any data was written.

EIO

I/O error. This indicates some hardware problem.

EINVAL

The write() function is not supported by this driver, not on this device, or generally not on
this type of device.

157

Chapter 5. V4L2 Driver Programming
to do

158

Chapter 6. History
The following chapters document the evolution of the V4L2 API, errata or extensions. They shall
also aid application and driver writers porting their software to later versions of V4L2.

6.1. Differences between V4L and V4L2
The Video For Linux API was first introduced in Linux 2.1 to unify and replace various TV and
radio device related interfaces, developped independently by driver writers in prior years. Starting
with Linux 2.5 the much improved V4L2 API replaces the V4L API, although existing drivers will
continue to support V4L in the future, either directly or through the V4L2 compatibility layer. For a
transition period not all drivers will support the V4L2 API.

6.1.1. Opening and Closing Devices
For compatibility reasons the character device file names recommended for V4L2 video capture,
overlay, radio, teletext and raw vbi capture devices did not change from those used by V4L. They are
listed in Chapter 4> and below in Table 6-1>.

The V4L "videodev" module automatically assigns minor numbers to drivers in load order,
depending on the registered device type. We recommend V4L2 drivers by default register devices
with the same numbers, but in principle the system administrator can assign arbitrary minor numbers
using driver module options. The major device number remains 81.

Table 6-1. V4L Device Types, Names and Numbers

Device Type File Name Minor Numbers
Video capture and overlay /dev/video and /dev/bttv0a,

/dev/video0 to
/dev/video63

0-63

Radio receiver /dev/radiob, /dev/radio0 to
/dev/radio63

64-127

Teletext decoder /dev/vtx, /dev/vtx0 to
/dev/vtx31

192-223

Raw VBI capture /dev/vbi, /dev/vbi0 to
/dev/vbi15

224-239c

Notes: a. According to Documentation/devices.txt these should be symbolic links to /dev/video0. Note the original bttv interface is not compatible with V4L or V4L2. b. According to Documentation/devices.txt a symbolic link to /dev/radio0. c. The range used to be 224-255. More device types may be added in the future, so you should expect more range splitting in the future.

V4L prohibits (or used to) multiple opens. V4L2 drivers may support multiple opens, see Section
1.1> for details and consequences.

V4L drivers respond to V4L2 ioctls with the EINVAL error code. The V4L2 "videodev" module
backward compatibility layer can translate V4L ioctl requests to their V4L2 counterpart, however a
V4L2 driver usually needs more preparation to become fully V4L compatible. This is covered in
more detail in Chapter 5>.

159

Chapter 6. History

6.1.2. Querying Capabilities
The V4L VIDIOCGCAP ioctl is equivalent to V4L2’s VIDIOC_QUERYCAP.

The name field in struct video_capability became card in struct v4l2_capability, type was replaced
by capabilities. Note V4L2 does not distinguish between device types like this, better think of
basic video input, video output and radio devices supporting a set of related functions like video
capturing, video overlay and VBI capturing. See Section 1.1> for an introduction.

struct video_capability type struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_CAPTURE V4L2_CAP_VIDEO_CAPTURE The video capture interface is
supported.

VID_TYPE_TUNER V4L2_CAP_TUNER The device has a tuner or
modulator.

VID_TYPE_TELETEXT V4L2_CAP_VBI_CAPTURE The raw VBI capture interface is
supported.

VID_TYPE_OVERLAY V4L2_CAP_VIDEO_OVERLAY The video overlay interface is
supported.

VID_TYPE_CHROMAKEY V4L2_FBUF_CAP_CHROMAKEY in
field capability of
struct v4l2_framebuffer

Whether chromakey overlay is
supported. For more information
on overlay see Section 4.2>.

VID_TYPE_CLIPPING V4L2_FBUF_CAP_LIST_CLIPPING

and
V4L2_FBUF_CAP_BITMAP_CLIPPING

in field capability of
struct v4l2_framebuffer

Whether clipping the overlaid
image is supported, see Section
4.2>.

VID_TYPE_FRAMERAM V4L2_FBUF_CAP_EXTERNOVERLAY

not set in field capability of
struct v4l2_framebuffer

Whether overlay overwrites
frame buffer memory, see
Section 4.2>.

VID_TYPE_SCALES - This flag indicates if the
hardware can scale images. The
V4L2 API implies the scale
factor by setting the cropping
dimensions and image size with
the VIDIOC_S_CROP and
VIDIOC_S_FMT ioctl,
respectively. The driver returns
the closest sizes possible. For
more information on cropping
and scaling see Section 1.10>.

VID_TYPE_MONOCHROME - Applications can enumerate the
supported image formats with the
VIDIOC_ENUM_FMT ioctl to
determine if the device supports
grey scale capturing only. For
more information on image
formats see Chapter 2>.

160

Chapter 6. History

struct video_capability type struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_SUBCAPTURE - Applications can call the
VIDIOC_G_CROP ioctl to
determine if the device supports
capturing a subsection of the full
picture ("cropping" in V4L2). If
not, the ioctl returns the EINVAL
error code. For more information
on cropping and scaling see
Section 1.10>.

The audios field was replaced by capabilities flag V4L2_CAP_AUDIO, indicating if the device
has any audio inputs or outputs. To determine their number applications can enumerate audio inputs
with the VIDIOC_G_AUDIO ioctl. The audio ioctls are described in Section 1.5>.

The maxwidth, maxheight, minwidth and minheight fields were removed. Calling the
VIDIOC_S_FMT or VIDIOC_TRY_FMT ioctl with the desired dimensions returns the closest size
possible, taking into account the current video standard, cropping and scaling.

6.1.3. Video Sources
V4L provides the VIDIOCGCHAN and VIDIOCSCHAN ioctl using struct video_channel to enumerate
the video inputs of a V4L device. The equivalent V4L2 ioctls are VIDIOC_ENUMINPUT,
VIDIOC_G_INPUT and VIDIOC_S_INPUT using struct v4l2_input as discussed in Section 1.4>.

The channel field counting inputs was renamed to index, the video input types were renamed:

struct video_channel type struct v4l2_input type
VIDEO_TYPE_TV V4L2_INPUT_TYPE_TUNER

VIDEO_TYPE_CAMERA V4L2_INPUT_TYPE_CAMERA

Unlike the tuners field expressing the number of tuners of this input, V4L2 assumes each video
input is associated with at most one tuner. On the contrary a tuner can have more than one input, i.e.
RF connectors, and a device can have multiple tuners. The index of the tuner associated with the
input, if any, is stored in field tuner of struct v4l2_input. Enumeration of tuners is discussed in
Section 1.6>.

The redundant VIDEO_VC_TUNER flag was dropped. Video inputs associated with a tuner are of type
V4L2_INPUT_TYPE_TUNER. The VIDEO_VC_AUDIO flag was replaced by the audioset field.
V4L2 considers devices with up to 32 audio inputs. Each set bit in the audioset field represents
one audio input this video input combines with. For information about audio inputs and how to
switch see Section 1.5>.

The norm field describing the supported video standards was replaced by std. The V4L
specification mentions a flag VIDEO_VC_NORM indicating whether the standard can be changed. This
flag was a later addition together with the norm field and has been removed in the meantime. V4L2
has a similar, albeit more comprehensive approach to video standards, see Section 1.7> for more
information.

161

Chapter 6. History

6.1.4. Tuning
The V4L VIDIOCGTUNER and VIDIOCSTUNER ioctl and struct video_tuner can be used to enumerate
the tuners of a V4L TV or radio device. The equivalent V4L2 ioctls are VIDIOC_G_TUNER and
VIDIOC_S_TUNER using struct v4l2_tuner. Tuners are covered in Section 1.6>.

The tuner field counting tuners was renamed to index. The fields name, rangelow and
rangehigh remained unchanged.

The VIDEO_TUNER_PAL, VIDEO_TUNER_NTSC and VIDEO_TUNER_SECAM flags indicating the
supported video standards were dropped. This information is now contained in the associated
struct v4l2_input. No replacement exists for the VIDEO_TUNER_NORM flag indicating whether the
video standard can be switched. The mode field to select a different video standard was replaced by a
whole new set of ioctls and structures described in Section 1.7>. Due to its ubiquity it should be
mentioned the BTTV driver supports several standards in addition to the regular VIDEO_MODE_PAL
(0), VIDEO_MODE_NTSC, VIDEO_MODE_SECAM and VIDEO_MODE_AUTO (3). Namely N/PAL
Argentina, M/PAL, N/PAL, and NTSC Japan with numbers 3-6 (sic).

The VIDEO_TUNER_STEREO_ON flag indicating stereo reception became
V4L2_TUNER_SUB_STEREO in field rxsubchans. This field also permits the detection of monaural
and bilingual audio, see the definition of struct v4l2_tuner for details. Presently no replacement
exists for the VIDEO_TUNER_RDS_ON and VIDEO_TUNER_MBS_ON flags.

The VIDEO_TUNER_LOW flag was renamed to V4L2_TUNER_CAP_LOW in the struct v4l2_tuner
capability field.

The VIDIOCGFREQ and VIDIOCSFREQ ioctl to change the tuner frequency where renamed to
VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY. They take a pointer to a struct v4l2_frequency
instead of an unsigned long integer.

6.1.5. Image Properties
V4L2 has no equivalent of the VIDIOCGPICT and VIDIOCSPICT ioctl and struct video_picture. The
following fields where replaced by V4L2 controls accessible with the VIDIOC_QUERYCTRL,
VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_picture V4L2 Control ID
brightness V4L2_CID_BRIGHTNESS

hue V4L2_CID_HUE

colour V4L2_CID_SATURATION

contrast V4L2_CID_CONTRAST

whiteness V4L2_CID_WHITENESS

The V4L picture controls are assumed to range from 0 to 65535 with no particular reset value. The
V4L2 API permits arbitrary limits and defaults which can be queried with the VIDIOC_QUERYCTRL
ioctl. For general information about controls see Section 1.8>.

The depth (average number of bits per pixel) of a video image is implied by the selected image
format. V4L2 does not explicitely provide such information assuming applications recognizing the
format are aware of the image depth and others need not know. The palette field moved into the
struct v4l2_pix_format:

162

Chapter 6. History

struct video_picture palette struct v4l2_pix_format pixfmt
VIDEO_PALETTE_GREY V4L2_PIX_FMT_GREY

VIDEO_PALETTE_HI240 V4L2_PIX_FMT_HI240a

VIDEO_PALETTE_RGB565 V4L2_PIX_FMT_RGB565

VIDEO_PALETTE_RGB555 V4L2_PIX_FMT_RGB555

VIDEO_PALETTE_RGB24 V4L2_PIX_FMT_BGR24

VIDEO_PALETTE_RGB32 V4L2_PIX_FMT_BGR32b

VIDEO_PALETTE_YUV422 V4L2_PIX_FMT_YUYV

VIDEO_PALETTE_YUYVc V4L2_PIX_FMT_YUYV

VIDEO_PALETTE_UYVY V4L2_PIX_FMT_UYVY

VIDEO_PALETTE_YUV420 None

VIDEO_PALETTE_YUV411 V4L2_PIX_FMT_Y41Pd

VIDEO_PALETTE_RAW Nonee

VIDEO_PALETTE_YUV422P V4L2_PIX_FMT_YUV422P

VIDEO_PALETTE_YUV411P V4L2_PIX_FMT_YUV411Pf

VIDEO_PALETTE_YUV420P V4L2_PIX_FMT_YVU420

VIDEO_PALETTE_YUV410P V4L2_PIX_FMT_YVU410

Notes: a. This is a custom format used by the BTTV driver, not one of the V4L2 standard formats. b. Presumably all V4L RGB formats are little-endian, although some drivers might interpret them according to machine endianess. V4L2 defines little-endian, big-endian and red/blue swapped variants. For details see Section 2.3>. c. VIDEO_PALETTE_YUV422 and VIDEO_PALETTE_YUYV are the same formats. Some V4L drivers respond to one, some to the other. d. Not to be confused with V4L2_PIX_FMT_YUV411P, which is a planar format. e. V4L explains this as: "RAW capture (BT848)" f. Not to be confused with V4L2_PIX_FMT_Y41P, which is a packed format.

V4L2 image formats are defined in Chapter 2>. The image format can be selected with the
VIDIOC_S_FMT ioctl.

6.1.6. Audio
The VIDIOCGAUDIO and VIDIOCSAUDIO ioctl and struct video_audio are used to enumerate the
audio inputs of a V4L device. The equivalent V4L2 ioctls are VIDIOC_G_AUDIO and
VIDIOC_S_AUDIO using struct v4l2_audio as discussed in Section 1.5>.

The audio "channel number" field counting audio inputs was renamed to index.

On VIDIOCSAUDIO the mode field selects one of the VIDEO_SOUND_MONO, VIDEO_SOUND_STEREO,
VIDEO_SOUND_LANG1 or VIDEO_SOUND_LANG2 audio demodulation modes. When the current
audio standard is BTSC VIDEO_SOUND_LANG2 refers to SAP and VIDEO_SOUND_LANG1 is
meaningless. Also undocumented in the V4L specification, there is no way to query the selected
mode. On VIDIOCGAUDIO the driver returns the actually received audio programmes in this field. In
the V4L2 API this information is stored in the struct v4l2_tuner rxsubchans and audmode fields,
respectively. See Section 1.6> for more information on tuners. Related to audio modes
struct v4l2_audio also reports if this is a mono or stereo input, regardless if the source is a tuner.

The following fields where replaced by V4L2 controls accessible with the VIDIOC_QUERYCTRL,
VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_audio V4L2 Control ID
volume V4L2_CID_AUDIO_VOLUME

bass V4L2_CID_AUDIO_BASS

treble V4L2_CID_AUDIO_TREBLE

balance V4L2_CID_AUDIO_BALANCE

163

Chapter 6. History

To determine which of these controls are supported by a driver V4L provides the flags
VIDEO_AUDIO_VOLUME, VIDEO_AUDIO_BASS, VIDEO_AUDIO_TREBLE and
VIDEO_AUDIO_BALANCE. In the V4L2 API the VIDIOC_QUERYCTRL ioctl reports if the respective
control is supported. Accordingly the VIDEO_AUDIO_MUTABLE and VIDEO_AUDIO_MUTE flags
where replaced by the boolean V4L2_CID_AUDIO_MUTE control.

All V4L2 controls have a step attribute replacing the struct video_audio step field. The V4L audio
controls are assumed to range from 0 to 65535 with no particular reset value. The V4L2 API permits
arbitrary limits and defaults which can be queried with the VIDIOC_QUERYCTRL ioctl. For general
information about controls see Section 1.8>.

6.1.7. Frame Buffer Overlay
The V4L2 ioctls equivalent to VIDIOCGFBUF and VIDIOCSFBUF are VIDIOC_G_FBUF and
VIDIOC_S_FBUF. The base field of struct video_buffer remained unchanged, except V4L2 using a
flag to indicate non-destructive overlay instead of a NULL pointer. All other fields moved into the
struct v4l2_pix_format substructure fmt of struct v4l2_framebuffer. The depth field was replaced
by pixelformat. A conversion table is available in the Section 2.3>.

Instead of the special ioctls VIDIOCGWIN and VIDIOCSWIN V4L2 uses the general-purpose data
format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT. They take a pointer to a
struct v4l2_format as argument, here the struct v4l2_window named win of its fmt union is used.

The x, y, width and height fields of struct video_window moved into struct v4l2_rect substructure
w of struct v4l2_window. The chromakey, clips, and clipcount fields remained unchanged.
Struct video_clip was renamed to struct v4l2_clip, also containing a struct v4l2_rect, but the
semantics are still the same.

The VIDEO_WINDOW_INTERLACE flag was dropped, instead applications must set the field field to
V4L2_FIELD_ANY or V4L2_FIELD_INTERLACED. The VIDEO_WINDOW_CHROMAKEY flag moved
into struct v4l2_framebuffer, renamed to V4L2_FBUF_FLAG_CHROMAKEY.

In V4L, storing a bitmap pointer in clips and setting clipcount to VIDEO_CLIP_BITMAP (-1)
requests bitmap clipping, using a fixed size bitmap of 1024 × 625 bits. Struct v4l2_window has a
separate bitmap pointer field for this purpose and the bitmap size is determined by w.width and
w.height.

The VIDIOCCAPTURE ioctl to enable or disable overlay was renamed to VIDIOC_OVERLAY.

6.1.8. Cropping
To capture only a subsection of the full picture V4L provides the VIDIOCGCAPTURE and
VIDIOCSCAPTURE ioctl using struct video_capture. The equivalent V4L2 ioctls are
VIDIOC_G_CROP and VIDIOC_S_CROP using struct v4l2_crop, and the related VIDIOC_CROPCAP

ioctl. This is a rather complex matter, see Section 1.10> for details.

The x, y, width and height fields moved into struct v4l2_rect substructure c of struct v4l2_crop.
The decimation field was dropped. The scaling factor is implied by the size of the cropping
rectangle and the size of the captured or overlaid image.

The VIDEO_CAPTURE_ODD and VIDEO_CAPTURE_EVEN flags to capture only the odd or even field,
respectively, were replaced by V4L2_FIELD_TOP and V4L2_FIELD_BOTTOM in the field named

164

Chapter 6. History

field of struct v4l2_pix_format and struct v4l2_window. These structures are used to determine
the capture or overlay format with the VIDIOC_S_FMT ioctl.

6.1.9. Reading Images, Memory Mapping

6.1.9.1. Capturing using the read method

There is no essential difference between reading images from a V4L or V4L2 device using the
read() function. Supporting this method is optional for V4L2 devices. Whether the function is
available can be determined with the VIDIOC_QUERYCAP ioctl. All V4L2 devices exchanging data
with applications must support the select() and poll() function.

To select an image format and size, V4L provides the VIDIOCSPICT and VIDIOCSWIN ioctls. V4L2
uses the general-purpose data format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT. They
take a pointer to a struct v4l2_format as argument, here the struct v4l2_pix_format named pix of its
fmt union is used.

For more information about the V4L2 read interface see Section 3.1>.

6.1.9.2. Capturing using memory mapping

Applications can read from V4L devices by mapping buffers in device memory, or more often just
buffers allocated in DMA-able system memory, into their address space. This avoids the data copy
overhead of the read method. V4L2 supports memory mapping as well, with a few differences.

V4L V4L2
The image format must be selected before buffers
are allocated, with the VIDIOC_S_FMT ioctl.
When no format is selected the driver may use the
last, possibly by another application requested
format.

Applications cannot change the number of buffers
allocated. The number is built into the driver,
unless it has a module option to change the
number when the driver module is loaded.

The VIDIOC_REQBUFS ioctl allocates the desired
number of buffers, this is a required step in the
initialization sequence.

Drivers map all buffers as one contiguous range of
memory. The VIDIOCGMBUF ioctl is available to
query the number of buffers, the offset of each
buffer from the start of the virtual file, and the
overall amount of memory used, which can be
used as arguments to the mmap() function.

Buffers are individually mapped. The offset and
size of each buffer can be determined with the
VIDIOC_QUERYBUF ioctl.

165

Chapter 6. History

V4L V4L2
The VIDIOCMCAPTURE ioctl prepares a buffer for
capturing. It also determines the image format
for this buffer. The ioctl returns immediately,
eventually with an EAGAIN error code if no
video signal had been detected. When the driver
supports more than one buffer applications can
call the ioctl multiple times and thus have
multiple outstanding capture requests.
The VIDIOCSYNC ioctl suspends execution until
a particular buffer has been filled.

Drivers maintain an incoming and outgoing
queue. VIDIOC_QBUF enqueues any empty buffer
into the incoming queue. Filled buffers are
dequeued from the outgoing queue with the
VIDIOC_DQBUF ioctl. To wait until filled buffers
become available this function, select() or
poll() can be used. The VIDIOC_STREAMON
ioctl must be called once after enqueuing one or
more buffers to start capturing. Its counterpart
VIDIOC_STREAMOFF stops capturing and
dequeues all buffers from both queues.
Applications can query the signal status, if known,
with the VIDIOC_ENUMINPUT ioctl.

For a more in-depth discussion of memory mapping and examples, see Section 3.2>.

6.1.10. Reading Raw VBI Data
Originally the V4L API did not specify a raw VBI capture interface, merely the device file
/dev/vbi was reserved for this purpose. The only driver supporting this interface was the BTTV
driver, de-facto defining the V4L VBI interface. Reading from the device yields a raw VBI image
with the following parameters:

struct v4l2_vbi_format V4L, BTTV driver
sampling_rate 28636363 Hz NTSC (precisely all 525-line

standards); 35468950 Hz PAL and SECAM
(625-line)

offset ?

samples_per_line 2048

sample_format V4L2_PIX_FMT_GREY. The last four bytes
(machine endianess integer) contain a frame
counter.

start[] 10, 273 NTSC; 22, 335 PAL and SECAM

count[] 16, 16a

flags 0

Notes: a. Old driver versions used different values, eventually the custom BTTV_VBISIZE ioctl was added to query the correct values.

Undocumented in the V4L specification, in Linux 2.3 the VIDIOCGVBIFMT and VIDIOCSVBIFMT

ioctls using struct vbi_format were added to determine the VBI image parameters. These ioctls are
only partially compatible with the V4L2 VBI interface specified in Section 4.6>.

An offset field does not exist, sample_format is supposed to be VIDEO_PALETTE_RAW, here
equivalent to V4L2_PIX_FMT_GREY. The remaining fields are probably equivalent to
struct v4l2_vbi_format.

Apparently only the Zoran (ZR 36120) driver implements these ioctls. The semantics differ from
those specified for V4L2 in two ways. The parameters are reset on open() and VIDIOCSVBIFMT

166

Chapter 6. History

always returns the EINVAL error code if the parameters are invalid.

6.1.11. Miscellaneous
V4L2 has no equivalent of the VIDIOCGUNIT ioctl. Applications can find the VBI device associated
with a video capture device (or vice versa) by reopening the device and requesting VBI data. For
details see Section 1.1>.

Presently no replacement exists for VIDIOCKEY, the V4L functions regarding MPEG compression
and decompression, and microcode programming. Drivers may implement the respective V4L ioctls
for these purposes.

6.2. History of the V4L2 API
Soon after the V4L API was added to the kernel it was criticised as too inflexible. In August 1998
Bill Dirks proposed a number of improvements and began work on documentation, example drivers
and applications. With the help of other volunteers this eventually became the V4L2 API, not just an
extension but a replacement for the V4L API. However it took another four years and two stable
kernel releases until the new API was finally accepted for inclusion into the kernel in its present
form.

6.2.1. Early Versions
1998-08-20: First version.

1998-08-27: select() function was introduced.

1998-09-10: New video standard interface.

1998-09-18: The VIDIOC_NONCAP ioctl was replaced by the O_TRUNC open() flag (with
synonym O_NONCAP/O_NOIO) to indicate a non-capturing open. The VIDEO_STD_XXX
identifiers are now ordinals rather than bits, and video_std_construct helper function takes id and
transmission as arguments.

1998-09-28: Revamped video standard. Made video controls individually enumerable.

1998-10-02: Removed id from video_standard, renamed color subcarrier fields. Renamed
VIDIOC_QUERYSTD to VIDIOC_ENUMSTD and VIDIOC_G_INPUT to
VIDIOC_ENUMINPUT. Added preliminary /proc/videodev file. First draft of CODEC driver API
spec.

1998-11-08: Updating for many minor changes to the V4L2 spec. Most symbols have been renamed.
Some material changes to v4l2_capability.

1998-11-12 bugfix: some of the VIDIOC_* symbols were not constructed with the right macros,
which could lead to errors on what should have been valid ioctl() calls.

1998-11-14: V4L2_PIX_FMT_RGB24 changed to V4L2_PIX_FMT_BGR24. Same for RGB32.
Audio UI controls moved to VIDIOC_S_CTRL system and assigned V4L2_CID_AUDIO_*
symbols. Removed V4L2_MAJOR from videodev.h since it is only used at one place in videodev.
Added YUV422 and YUV411 planar formats.

1998-11-28: Changed a few ioctl symbols. Added stuff for codec and video output devices.

167

Chapter 6. History

1999-01-14: Added raw VBI interface.

1999-01-19: Removed VIDIOC_NEXTBUF ioctl.

6.2.2. V4L2 Version 0.16 1999-01-31
1999-01-27: There is now one QBUF ioctl, VIDIOC_QWBUF and VIDIOC_QRBUF are gone.
VIDIOC_QBUF takes a v4l2_buffer as a parameter. Added digital zoom (cropping) controls.

6.2.3. V4L2 Version 0.18 1999-03-16
Added a v4l to V4L2 ioctl compatibility layer to videodev.c. Driver writers, this changes how you
implement your ioctl handler. See the Driver Writer’s Guide. Added some more control id codes.

6.2.4. V4L2 Version 0.19 1999-06-05
1999-03-18: Fill in the category and catname fields of v4l2_queryctrl objects before passing them to
the driver. Required a minor change to the VIDIOC_QUERYCTRL handlers in the sample drivers.

1999-03-31: Better compatibility for v4l memory capture ioctls. Requires changes to drivers to fully
support new compatibility features, see Driver Writer’s Guide and v4l2cap.c. Added new control
IDs: V4L2_CID_HFLIP, _VFLIP. Changed V4L2_PIX_FMT_YUV422P to _YUV422P, and
_YUV411P to _YUV411P.

1999-04-04: Added a few more control IDs.

1999-04-07: Added the button control type.

1999-05-02: Fixed a typo in videodev.h, and added the V4L2_CTRL_FLAG_GRAYED (later
V4L2_CTRL_FLAG_GRABBED) flag.

1999-05-20: Definition of VIDIOC_G_CTRL was wrong causing a malfunction of this ioctl.

1999-06-05: Changed the value of V4L2_CID_WHITENESS.

6.2.5. V4L2 Version 0.20 1999-09-10
Version 0.20 introduced a number of changes not backward compatible with 0.19 and earlier. The
purpose was to simplify the API, while at the same time make it more extensible, and follow
common Linux driver API conventions.

1. Fixed typos in some V4L2_FMT_FLAG symbols. Changed struct v4l2_clip to be compatible
with v4l. (1999-08-30)

2. Added V4L2_TUNER_SUB_LANG1. (1999-09-05)

3. All ioctl() commands that took an integer argument before, will now take a pointer to an integer.
Where it makes sense, the driver will return the actual value used in the integer pointed to by the
argument. This is a common convention, and also makes certain things easier in libv4l2 and
other system code when the parameter to ioctl() is always a pointer. The ioctl commands
affected are: VIDIOC_PREVIEW, VIDIOC_STREAMON, VIDIOC_STREAMOFF,
VIDIOC_S_FREQ, VIDIOC_S_INPUT, VIDIOC_S_OUTPUT, VIDIOC_S_EFFECT. For
example, where before you might have had code like:

168

Chapter 6. History

err = ioctl (fd, VIDIOC_XXX, V4L2_XXX);

that becomes

int a = V4L2_XXX; err = ioctl(fd, VIDIOC_XXX, &a);

4. All the different set-format ioctl() commands are swept into a single set-format command whose
parameter consists of an integer value indicating the type of format, followed by the format data.
The same for the get-format commands, of course. This will simplify the API by eliminating
several ioctl codes and also make it possible to add additional kinds of data streams, or
driver-private kinds of streams without having to add more set-format ioctls. The parameter to
VIDIOC_S_FMT is as follows. The first field is a V4L2_BUF_TYPE_XXX value that indicates
which stream the set-format is for, and implicitly, what type of format data. After that is a union
of the different format structures. More can be added later without breaking backward
compatibility. Nonstandard driver-private formats can be used by casting raw_data.

struct v4l2_format {
__u32 type;
union {

struct v4l2_pix_format pix;
struct v4l2_vbi_format vbi;
... and so on ...
__u8 raw_data[200];

} fmt;
};

For a get-format, the application fills in the type field, and the driver fills in the rest. What was
before the image format structure, struct v4l2_format, becomes struct v4l2_pix_format. These
ioctls become obsolete: VIDIOC_S_INFMT, VIDIOC_G_INFMT, VIDIOC_S_OUTFMT,
VIDIOC_G_OUTFMT, VIDIOC_S_VBIFMT VIDIOC_G_VBIFMT.

5. Similar to item 2, VIDIOC_G/S_PARM and VIDIOC_G/S_OUTPARM are merged, along with
the corresponding ’get’ functions. A type field will indicate which stream the parameters are for,
set to a V4L2_BUF_TYPE_* value.

struct v4l2_streamparm {
__u32 type;
union {

struct v4l2_captureparm capture;
struct v4l2_outputparm output;
__u8 raw_data[200];

} parm;
};

These ioctls become obsolete: VIDIOC_G_OUTPARM, VIDIOC_S_OUTPARM.

6. The way controls are enumerated is simplified. Simultaneously, two new control flags are
introduced and the existing flag is dropped. Also, the catname field is dropped in favor of a
group name. To enumerate controls call VIDIOC_QUERYCTRL with successive id’s starting
from V4L2_CID_BASE or V4L2_CID_PRIVATE_BASE and stop when the driver returns the
EINVAL error code. Controls that are not supported on the hardware are marked with the
V4L2_CTRL_FLAG_DISABLED flag.

Additionally, controls that are temporarily unavailable, or that can only be controlled from
another file descriptor are marked with the V4L2_CTRL_FLAG_GRABBED flag. Usually, a
control that is GRABBED, but not DISABLED can be read, but changed. The group name
indicates a possibly narrower classification than the category. In other words, there may be

169

Chapter 6. History

multiple groups within a category. Controls within a group would typically be drawn within a
group box. Controls in different categories might have a greater separation, or even be in
separate windows.

7. The v4l2_buffer timestamp field is changed to a 64-bit integer, and holds the time of the frame
based on the system time, in 1 nanosecond units. Additionally, timestamps will be in absolute
system time, not starting from zero at the beginning of a stream as it is now. The data type name
for timestamps is stamp_t, defined as a signed 64-bit integer. Output devices should not send a
buffer out until the time in the timestamp field has arrived. I would like to follow SGI’s lead, and
adopt a multimedia timestamping system like their UST (Unadjusted System Time). See
http://reality.sgi.com/cpirazzi_engr/lg/time/intro.html. [This link is no longer valid.] UST uses
timestamps that are 64-bit signed integers (not struct timeval’s) and given in nanosecond units.
The UST clock starts at zero when the system is booted and runs continuously and uniformly. It
takes a little over 292 years for UST to overflow. There is no way to set the UST clock. The
regular Linux time-of-day clock can be changed periodically, which would cause errors if it
were being used for timestamping a multimedia stream. A real UST style clock will require
some support in the kernel that is not there yet. But in anticipation, I will change the timestamp
field to a 64-bit integer, and I will change the v4l2_masterclock_gettime() function (used only
by drivers) to return a 64-bit integer.

8. The sequence field is added to the struct v4l2_buffer. The sequence field indicates which frame
this is in the sequence-- 0, 1, 2, 3, 4, etc. Set by capturing devices. Ignored by output devices. If
a capture driver drops a frame, the sequence number of that frame is skipped. A break in the
sequence will indicate to the application which frame was dropped.

6.2.6. V4L2 Version 0.20 incremental changes
1999-12-23: In struct v4l2_vbi_format field reserved1 became offset. Previously reserved1

was required to always read zero.

2000-01-13: Added V4L2_FMT_FLAG_NOT_INTERLACED.

2000-07-31: Included linux/poll.h in videodev.h for compatibility with the original videodev.h.

2000-11-20: Added V4L2_TYPE_VBI_OUTPUT. Added V4L2_PIX_FMT_Y41P.

2000-11-25: Added V4L2_TYPE_VBI_INPUT.

2000-12-04: Fixed a couple typos in symbol names.

2001-01-18: Fixed a namespace conflict (the fourcc macro changed to v4l2_fourcc).

2001-01-25: Fixed a possible driver-level compatibility problem between the original 2.4.0
videodev.h and the videodev.h that comes with videodevX. If you were using an earlier version of
videodevX on 2.4.0, then you should recompile your v4l and V4L2 drivers to be safe.

2001-01-26: videodevX: Fixed a possible kernel-level incompatibility between the videodevX
videodev.h and the 2.2.x videodev.h that had the devfs patches applied. videodev: Changed fourcc to
v4l2_fourcc to avoid namespace pollution. Some other cleanup.

2001-03-02: Certain v4l ioctls that really pass data both ways, but whose types are read-only, did not
work correctly through the backward compatibility layer. [Solution?]

2001-04-13: Added big endian 16-bit RGB formats.

2001-09-17: Added new YUV formats. Added VIDIOC_G_FREQUENCY and
VIDIOC_S_FREQUENCY. (The VIDIOC_G/S_FREQ ioctls did not take multiple tuners into
account.)

170

Chapter 6. History

2000-09-18: Added V4L2_BUF_TYPE_VBI. Raw VBI VIDIOC_G_FMT and VIDIOC_S_FMT
may fail if field type is not V4L2_BUF_TYPE_VBI. Changed the ambiguous phrase "rising edge"
to "leading edge" in the definition of struct v4l2_vbi_format field offset.

6.2.7. V4L2 Version 0.20 2000-11-23
A number of changes were made to the raw VBI interface.

1. Added figures clarifying the line numbering scheme. The description of start[0] and start[1]
as base 0 offset has been dropped. Rationale: a) The previous definition was unclear. b) The
start[] values are not an offset into anything, as a means of identifying scanning lines it can
only be counterproductive to deviate from common numbering conventions. Compatibility: Add
one to the start values. Applications depending on the previous semantics of start values may not
function correctly.

2. The restriction "count[0] > 0 and count[1] > 0" has been relaxed to "(count[0] + count[1]) >

0". Rationale: Drivers allocating resources at scanning line granularity and first field only data
services. The comment that both ’count’ values will usually be equal is misleading and pointless
and has been removed. Compatibility: Drivers may return EINVAL, applications depending on
the previous restriction may not function correctly.

3. Restored description of the driver option to return negative start values. Existed in the initial
revision of this document, not traceable why it disappeared in later versions. Compatibility:
Applications depending on the returned start values being positive may not function correctly.
Clarification on the use of EBUSY and EINVAL in VIDIOC_S_FMT ioctl. Added EBUSY
paragraph to section. Added description of reserved2, previously mentioned only in videodev.h.

4. Added V4L2_TYPE_VBI_INPUT and V4L2_TYPE_VBI_OUTPUT here and in videodev.h.
The first is an alias for the older V4L2_TYPE_VBI, the latter was missing in videodev.h.

6.2.8. V4L2 Version 0.20 2002-07-25
Added sliced VBI interface proposal.

6.2.9. V4L2 in Linux 2.5.46, 2002-10
Around October-November 2002, prior to an announced feature freeze of Linux 2.5, the API was
revised, drawing from experience with V4L2 0.20. This unnamed version was finally merged into
Linux 2.5.46.

1. As specified in Section 1.1.2> drivers must make related device functions available under all
minor device numbers.

2. The open() function requires access mode O_RDWR regardless of device type. All V4L2 drivers
exchanging data with applications must support the O_NONBLOCK flag. The O_NOIO flag (alias
of meaningless O_TRUNC) to indicate accesses without data exchange (panel applications) was
dropped. Drivers must assume panel mode until the application attempts to initiate data
exchange, see Section 1.1>.

171

Chapter 6. History

3. The struct v4l2_capability changed dramatically. Note that also the size of the structure
changed, which is encoded in the ioctl request code, thus older V4L2 devices will respond with
an EINVAL error code to the new VIDIOC_QUERYCAP ioctl.

There are new fields to identify the driver, a new (as of yet unspecified) device function
V4L2_CAP_RDS_CAPTURE, the V4L2_CAP_AUDIO flag indicates if the device has any audio
connectors, another I/O capability V4L2_CAP_ASYNCIO can be flagged. Field type became a
set in response to the change above and was merged with flags. V4L2_FLAG_TUNER was
renamed to V4L2_CAP_TUNER, V4L2_CAP_VIDEO_OVERLAY replaced V4L2_FLAG_PREVIEW

and V4L2_CAP_VBI_CAPTURE and V4L2_CAP_VBI_OUTPUT replaced
V4L2_FLAG_DATA_SERVICE. V4L2_FLAG_READ and V4L2_FLAG_WRITE merged to
V4L2_CAP_READWRITE.

Redundant fields inputs, outputs, audios were removed, these can be determined as
described in Section 1.4> and Section 1.5>.

The somewhat volatile and therefore barely useful fields maxwidth, maxheight, minwidth,
minheight, maxframerate were removed, this information is available as described in
Section 1.9> and Section 1.7>.

V4L2_FLAG_SELECT was removed, this function is considered important enough that all V4L2
drivers exchanging data with applications must support select(). The redundant flag
V4L2_FLAG_MONOCHROME was removed, this information is available as described in Section
1.9>.

4. In struct v4l2_input the assoc_audio field and the capability field and its only flag
V4L2_INPUT_CAP_AUDIO was replaced by the new audioset field. Instead of linking one
video input to one audio input this field reports all audio inputs this video input combines with.

New fields are tuner (reversing the former link from tuners to video inputs), std and status.

Accordingly struct v4l2_output lost its capability and assoc_audio fields, audioset,
modulator and std where added.

5. The struct v4l2_audio field audio was renamed to index, consistent with other structures.
Capability flag V4L2_AUDCAP_STEREO was added to indicated if this is a stereo input.
V4L2_AUDCAP_EFFECTS and the corresponding V4L2_AUDMODE flags where removed, this can
be easily implemented using controls. (However the same applies to AVL which is still there.)

The struct v4l2_audioout field audio was renamed to index.

6. The struct v4l2_tuner input field was replaced by an index field, permitting devices with
multiple tuners. The link between video inputs and tuners is now reversed, inputs point to the
tuner they are on. The std substructure became a simple set (more about this below) and moved
into struct v4l2_input. A type field was added.

Accordingly in struct v4l2_modulator the output was replaced by an index field.

In struct v4l2_frequency the port field was replaced by a tuner field containing the respective
tuner or modulator index number. A tuner type field was added and the reserved field
became larger for future extensions (satellite tuners in particular).

7. The idea of completely transparent video standards was dropped. Experience showed that
applications must be able to work with video standards beyond presenting the user a menu. To
this end V4L2 returned to defined standards as v4l2_std_id, replacing references to standards
throughout the API. For details see Section 1.7>. VIDIOC_G_STD and VIDIOC_S_STD now take
a pointer to this type as argument. VIDIOC_QUERYSTD was added to autodetect the received
standard. In struct v4l2_standard an index field was added for VIDIOC_ENUMSTD. A
v4l2_std_id field named id was added as machine readable identifier, also replacing the
transmission field. framerate, which is misleading, was renamed to frameperiod. The

172

Chapter 6. History

now obsolete colorstandard information, originally needed to distguish between variations
of standards, were removed.

Struct v4l2_enumstd ceased to be. VIDIOC_ENUMSTD now takes a pointer to a
struct v4l2_standard directly. The information which standards are supported by a particular
video input or output moved into struct v4l2_input and struct v4l2_output fields named std,
respectively.

8. The struct v4l2_queryctrl fields category and group did not catch on and/or were not
implemented as expected and therefore removed.

9. The VIDIOC_TRY_FMT ioctl was added to negotiate data formats as with VIDIOC_S_FMT, but
without the overhead of programming the hardware and regardless of I/O in progress.

In struct v4l2_format the fmt union was extended to contain struct v4l2_window. As a result all
data format negotiation is now possible with VIDIOC_G_FMT, VIDIOC_S_FMT and
VIDIOC_TRY_FMT; the VIDIOC_G_WIN, VIDIOC_S_WIN and ioctl to prepare for overlay were
removed. The type field changed to type enum v4l2_buf_type and the buffer type names
changed as follows.

Old defines enum v4l2_buf_type
V4L2_BUF_TYPE_CAPTURE V4L2_BUF_TYPE_VIDEO_CAPTURE

V4L2_BUF_TYPE_CODECIN Preliminary omitted

V4L2_BUF_TYPE_CODECOUT Preliminary omitted

V4L2_BUF_TYPE_EFFECTSIN Preliminary omitted

V4L2_BUF_TYPE_EFFECTSIN2 Preliminary omitted

V4L2_BUF_TYPE_EFFECTSOUT Preliminary omitted

V4L2_BUF_TYPE_VIDEOOUT V4L2_BUF_TYPE_VIDEO_OUTPUT

- V4L2_BUF_TYPE_VIDEO_OVERLAY

- V4L2_BUF_TYPE_VBI_CAPTURE

- V4L2_BUF_TYPE_VBI_OUTPUT

V4L2_BUF_TYPE_PRIVATE_BASE V4L2_BUF_TYPE_PRIVATE

10. In struct v4l2_fmtdesc a enum v4l2_buf_type field named type was added as in
struct v4l2_format. As a result the VIDIOC_ENUM_FBUFFMT ioctl is no longer needed and was
removed. These calls can be replaced by VIDIOC_ENUM_FMT with type
V4L2_BUF_TYPE_VIDEO_OVERLAY.

11. In struct v4l2_pix_format the depth was removed, assuming applications recognizing the
format are aware of the image depth and others need not know. The same rationale lead to the
removal of the V4L2_FMT_FLAG_COMPRESSED flag. The
V4L2_FMT_FLAG_SWCONVECOMPRESSED flag was removed because drivers are not supposed to
convert image formats in kernel space. The V4L2_FMT_FLAG_BYTESPERLINE flag was
redundant, applications can set the bytesperline field to zero to get a reasonable default.
Since also the remaining flags were replaced, the flags field itself was removed.

The interlace flags were replaced by a enum v4l2_field value in a newly added field field.

Old flag enum v4l2_field
V4L2_FMT_FLAG_NOT_INTERLACED ?

V4L2_FMT_FLAG_INTERLACED =
V4L2_FMT_FLAG_COMBINED

V4L2_FIELD_INTERLACED

173

Chapter 6. History

Old flag enum v4l2_field
V4L2_FMT_FLAG_TOPFIELD =
V4L2_FMT_FLAG_ODDFIELD

V4L2_FIELD_TOP

V4L2_FMT_FLAG_BOTFIELD =
V4L2_FMT_FLAG_EVENFIELD

V4L2_FIELD_BOTTOM

- V4L2_FIELD_SEQ_TB

- V4L2_FIELD_SEQ_BT

- V4L2_FIELD_ALTERNATE

The color space flags were replaced by a enum v4l2_colorspace value in a newly added
colorspace field, where one of V4L2_COLORSPACE_SMPTE170M,
V4L2_COLORSPACE_BT878, V4L2_COLORSPACE_470_SYSTEM_M or
V4L2_COLORSPACE_470_SYSTEM_BG replaces V4L2_FMT_CS_601YUV.

12. In struct v4l2_requestbuffers the type field was properly typed as enum v4l2_buf_type. Buffer
types changed as mentioned above. A new memory field of type enum v4l2_memory was added
to distinguish between mapping methods using buffers allocated by the driver or the application.
See Chapter 3> for details.

13. In struct v4l2_buffer the type field was properly typed as enum v4l2_buf_type. Buffer types
changed as mentioned above. A field field of type enum v4l2_field was added to indicate if a
buffer contains a top or bottom field, the field flags were removed. Realizing the efforts to
introduce an unadjusted system time clock failed, the timestamp field changed back from type
stamp_t, an unsigned 64 bit integer expressing time in nanoseconds, to struct timeval. With the
addition of a second memory mapping method the offset field moved into union m, and a new
memory field of type enum v4l2_memory was added to distinguish between mapping methods.
See Chapter 3> for details.

The V4L2_BUF_REQ_CONTIG flag was used by the V4L compatibility layer, after changes to
this code it was no longer needed. The V4L2_BUF_ATTR_DEVICEMEM flag would indicate if the
buffer was indeed allocated in device memory rather than DMA-able system memory. It was
barely useful and so has been removed.

14. In struct v4l2_framebuffer the base[3] array anticipating double- and triple-buffering in
off-screen video memory, however without defining a synchronization mechanism, was replaced
by a single pointer. The V4L2_FBUF_CAP_SCALEUP and V4L2_FBUF_CAP_SCALEDOWN flags
were removed. Applications can determine this capability more accurately using the new
cropping and scaling interface. The V4L2_FBUF_CAP_CLIPPING flag was replaced by
V4L2_FBUF_CAP_LIST_CLIPPING and V4L2_FBUF_CAP_BITMAP_CLIPPING.

15. In struct v4l2_clip the x, y, width and height field moved into a c substructure of type
struct v4l2_rect. The x and y field were renamed to left and top, i. e. offsets to a context
dependent origin.

16. In struct v4l2_window the x, y, width and height field moved into a w substructure as above.
A field field of type %v4l2-field; was added to distinguish between field and frame
(interlaced) overlay.

17. The digital zoom interface, including struct v4l2_zoomcap, struct v4l2_zoom,
V4L2_ZOOM_NONCAP and V4L2_ZOOM_WHILESTREAMING was replaced by a new cropping and
scaling interface. The previously unused struct v4l2_cropcap and v4l2_crop where redefined for
this purpose. See Section 1.10> for details.

174

Chapter 6. History

18. In struct v4l2_vbi_format the SAMPLE_FORMAT field now contains a four-character-code as used
to identify video image formats. V4L2_PIX_FMT_GREY replaces the V4L2_VBI_SF_UBYTE
define. The reserved field was extended.

19. In struct v4l2_captureparm the type of the timeperframe field changed from unsigned long to
struct v4l2_fract. A new field readbuffers was added to control the driver behaviour in read
I/O mode.

According changes were made to struct v4l2_outputparm.

20. The struct v4l2_performance and VIDIOC_G_PERF ioctl were dropped. Except when using the
read/write I/O method, which is limited anyway, this information is already available to the
application.

21. The example transformation from RGB to YCbCr color space in the old V4L2 documentation
was inaccurate, this has been corrected in Chapter 2>.

6.2.10. V4L2 2003-06-19

1. A new capability flag V4L2_CAP_RADIO was added for radio devices. Prior to this change radio
devices would identify soley by having exactly one tuner whose type field reads
V4L2_TUNER_RADIO.

2. An optional priority mechanism was added, see Section 1.3> for details.

3. The audio input and output interface was found to be incomplete.

Previously the VIDIOC_G_AUDIO ioctl would enumerate the available audio inputs. An ioctl to
determine the current audio input, if more than one combines with the current video input, did
not exist. So VIDIOC_G_AUDIO was renamed to VIDIOC_G_AUDIO_OLD, this ioctl will be
removed in the future. The VIDIOC_ENUMAUDIO ioctl was added to enumerate audio inputs,
while VIDIOC_G_AUDIO now reports the current audio input.

The same changes were made to VIDIOC_G_AUDOUT and VIDIOC_ENUMAUDOUT.

Until further the "videodev" module will automatically translate to the new versions, drivers and
applications must be updated when they are recompiled.

4. The VIDIOC_OVERLAY ioctl was incorrectly defined with read-write parameter. It was changed
to write-only, while the read-write version was renamed to VIDIOC_OVERLAY_OLD. This
function will be removed in the future. Until further the "videodev" module will automatically
translate to the new version, so drivers must be recompiled, but not applications.

5. Section 4.2> incorrectly stated that clipping rectangles define regions where the video can be
seen. Correct is that clipping rectangles define regions where no video shall be displayed and so
the graphics surface can be seen.

6. The VIDIOC_S_PARM and VIDIOC_S_CTRL were defined with write-only parameter,
inconsistent with other ioctls modifying their argument. They were changed to read-write, while
a _OLD suffix was added to the write-only version. These functions will be removed in the
future. Drivers, and applications assuming a constant parameter, need an update.

175

Chapter 6. History

6.2.11. V4L2 2003-11-05

1. In Section 2.3> the following pixel formats were incorrectly transferred from Bill Dirks’ V4L2
specification. Descriptions refer to bytes in memory, in ascending address order.

Symbol In this document prior to
revision 0.5

Correct

V4L2_PIX_FMT_RGB24 B, G, R R, G, B

V4L2_PIX_FMT_BGR24 R, G, B B, G, R

V4L2_PIX_FMT_RGB32 B, G, R, X R, G, B, X

V4L2_PIX_FMT_BGR32 R, G, B, X B, G, R, X

The V4L2_PIX_FMT_BGR24 example was always correct.

In Section 6.1.5> the mapping of VIDEO_PALETTE_RGB24 and VIDEO_PALETTE_RGB32 to
V4L2 pixel formats was accordingly corrected.

2. Unrelated to the fixes above, drivers may still interpret some V4L2 RGB pixel formats
differently. These issues have yet to be addressed, for details see Section 2.3>.

6.2.12. V4L2 in Linux 2.6.6, 2004-05-09

1. The VIDIOC_CROPCAP ioctl was incorrectly defined with read-only parameter. It was changed
to read-write, while the read-only version was renamed to VIDIOC_CROPCAP_OLD. This
function will be removed in the future.

6.2.13. V4L2 in Linux 2.6.8

1. A new field input (former reserved[0]) was added to the struct v4l2_buffer structure. It must
be enabled with the new V4L2_BUF_FLAG_INPUT flag. The flags field is no longer read-only.

6.2.14. V4L2 spec erratum 2004-08-01

1. The return value of the V4L2 open()(2)> function was incorrect.

2. Audio output ioctls end in -AUDOUT, not -AUDIOOUT.

3. In the current audio input example the VIDIOC_G_AUDIO ioctl took the wrong argument.

4. The VIDIOC_QBUF and VIDIOC_DQBUF ioctl did not mention the struct v4l2_buffer memory
field, it was also missing from examples. Added description of the VIDIOC_DQBUF EIO error.

176

Chapter 6. History

6.2.15. V4L2 in Linux 2.6.14

1. A new sliced VBI interface (see Section 4.7>) was added. It replaces the interface proposed in
V4L2 specification 0.8.

6.2.16. V4L2 in Linux 2.6.15

1. The VIDIOC_LOG_STATUS ioctl was added.

2. New video standards V4L2_STD_NTSC_443, V4L2_STD_SECAM_LC, V4L2_STD_SECAM_DK (a
set of SECAM D, K and K1), and V4L2_STD_ATSC (a set of V4L2_STD_ATSC_8_VSB and
V4L2_STD_ATSC_16_VSB) were defined. Note the V4L2_STD_525_60 set now includes
V4L2_STD_NTSC_443. See also Table 3>.

3. The VIDIOC_G_COMP and VIDIOC_S_COMP ioctl were renamed to VIDIOC_G_MPEGCOMP and
VIDIOC_S_MPEGCOMP respectively. Their argument was replaced by a
struct v4l2_mpeg_compression pointer.

6.2.17. V4L2 spec erratum 2005-11-27
The capture example in Appendix B> called VIDIOC_S_CROP without checking if cropping
(VIDIOC_CROPCAP) is supported. In the video standard selection example in Section 1.7> the
VIDIOC_S_STD call used the wrong argument type.

6.2.18. V4L2 spec erratum 2006-01-10

1. The V4L2_IN_ST_COLOR_KILL flag in struct v4l2_input does not only indicate if the color
killer is enabled, but also if it is active (disabling color decoding because it detects no color
modulation).

2. VIDIOC_S_PARM is a read/write ioctl, not write-only as stated on the respective function
reference page. The ioctl changed in 2003 as noted above.

6.2.19. V4L2 spec erratum 2006-02-03

1. In struct v4l2_captureparm and struct v4l2_outputparm the timeperframe field gives the time
in seconds, not microseconds.

177

Chapter 6. History

6.3. Relation of V4L2 to other Linux multimedia APIs

6.3.1. X Video Extension
The X Video Extension (abbreviated XVideo or just Xv) is an extension of the X Window system,
implemented for example by the XFree86 project. Its scope is similar to V4L2, an API to video
capture and output devices for X clients. Xv allows applications to display live video in a window,
send window contents to a TV output, and capture or output still images in XPixmaps1. With their
implementation XFree86 makes the extension available across many operating systems and
architectures.

Because the driver is embedded into the X server Xv has a number of advantages over the V4L2
video overlay interface. The driver can easily determine the overlay target, i. e. visible graphics
memory or off-screen buffers for non-destructive overlay. It can program the RAMDAC for overlay,
scaling or color-keying, or the clipping functions of the video capture hardware, always in sync with
drawing operations or windows moving or changing their stacking order.

To combine the advantages of Xv and V4L a special Xv driver exists in XFree86, just programming
any overlay capable Video4Linux device it finds. To enable it /etc/X11/XF86Config must contain
these lines:

Section "Module"
Load "v4l"

EndSection

As of XFree86 4.2 this driver still supports only V4L ioctls, however it should work just fine with all
V4L2 devices through the V4L2 backward-compatibility layer. Since V4L2 permits multiple opens
it is possible (if supported by the V4L2 driver) to capture video while an X client requested video
overlay. Restrictions of simultaneous capturing and overlay mentioned in Section 4.2> apply.

Only marginally related to V4L2, XFree86 extended Xv to support hardware YUV to RGB
conversion and scaling for faster video playback, and added an interface to MPEG-2 decoding
hardware. This can be used to improve displaying captured images.

6.3.2. Digital Video
V4L2 does not, at this time and possibly never, support digital terrestrial, cable or satellite broadcast.
A separate project aiming at digital receivers exists. You can find its homepage at http://linuxtv.org.
This group found the requirements sufficiently different from analog television to choose
independent development of their interfaces.

6.3.3. Audio Interfaces
[to do - OSS/ALSA]

Notes
1. This is not implemented in XFree86.

178

Appendix A. Video For Linux Two Header File
#ifndef __LINUX_VIDEODEV2_H
#define __LINUX_VIDEODEV2_H
/*
* Video for Linux Two

*
* Header file for v4l or V4L2 drivers and applications, for

* Linux kernels 2.2.x or 2.4.x.

*
* See http://bytesex.org/v4l/ for API specs and other

* v4l2 documentation.

*
* Author: Bill Dirks <bdirks@pacbell.net>

* Justin Schoeman

* et al.

*/
#ifdef __KERNEL__
#include <linux/time.h> /* need struct timeval */
#include <linux/poll.h>

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,69)
#include <linux/devfs_fs_kernel.h>

#endif
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
#include <linux/device.h>

#endif
#endif
#include <linux/compiler.h> /* need __user */

#define OBSOLETE_OWNER 1 /* It will be removed for 2.6.15 */
#define HAVE_V4L2 1

/*
* Common stuff for both V4L1 and V4L2

* Moved from videodev.h

*/

#define VIDEO_MAX_FRAME 32

#define VID_TYPE_CAPTURE 1 /* Can capture */
#define VID_TYPE_TUNER 2 /* Can tune */
#define VID_TYPE_TELETEXT 4 /* Does teletext */
#define VID_TYPE_OVERLAY 8 /* Overlay onto frame buffer */
#define VID_TYPE_CHROMAKEY 16 /* Overlay by chromakey */
#define VID_TYPE_CLIPPING 32 /* Can clip */
#define VID_TYPE_FRAMERAM 64 /* Uses the frame buffer memory */
#define VID_TYPE_SCALES 128 /* Scalable */
#define VID_TYPE_MONOCHROME 256 /* Monochrome only */
#define VID_TYPE_SUBCAPTURE 512 /* Can capture subareas of the image */
#define VID_TYPE_MPEG_DECODER 1024 /* Can decode MPEG streams */
#define VID_TYPE_MPEG_ENCODER 2048 /* Can encode MPEG streams */
#define VID_TYPE_MJPEG_DECODER 4096 /* Can decode MJPEG streams */
#define VID_TYPE_MJPEG_ENCODER 8192 /* Can encode MJPEG streams */

#ifdef __KERNEL__

179

Appendix A. Video For Linux Two Header File

#define VFL_TYPE_GRABBER 0
#define VFL_TYPE_VBI 1
#define VFL_TYPE_RADIO 2
#define VFL_TYPE_VTX 3

struct video_device
{

/* device info */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)

struct device *dev;
#endif

char name[32];
int type; /* v4l1 */
int type2; /* v4l2 */
int hardware;
int minor;

/* device ops + callbacks */
struct file_operations *fops;
void (*release)(struct video_device *vfd);

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/* old, obsolete interface -- dropped in 2.5.x, don’t use it */
int (*open)(struct video_device *, int mode);
void (*close)(struct video_device *);
long (*read)(struct video_device *, char *, unsigned long, int noblock);
long (*write)(struct video_device *, const char *, unsigned long, int noblock);
unsigned int (*poll)(struct video_device *, struct file *, poll_table *);
int (*ioctl)(struct video_device *, unsigned int , void *);
int (*mmap)(struct video_device *, const char *, unsigned long);
int (*initialize)(struct video_device *);

#endif

#if OBSOLETE_OWNER /* to be removed in 2.6.15 */
/* obsolete -- fops->owner is used instead */
struct module *owner;
/* dev->driver_data will be used instead some day.

* Use the video_{get|set}_drvdata() helper functions,

* so the switch over will be transparent for you.

* Or use {pci|usb}_{get|set}_drvdata() directly. */
void *priv;

#endif

/* for videodev.c intenal usage -- please don’t touch */
int users; /* video_exclusive_{open|close} ... */
struct semaphore lock; /* ... helper function uses these */

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,69)
devfs_handle_t devfs_handle; /* devfs */

#else
char devfs_name[64]; /* devfs */

#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)

struct class_device class_dev; /* sysfs */
#endif
};

180

Appendix A. Video For Linux Two Header File

#define VIDEO_MAJOR 81

extern int video_register_device(struct video_device *, int type, int nr);
extern void video_unregister_device(struct video_device *);
extern int video_usercopy(struct inode *inode, struct file *file,

unsigned int cmd, unsigned long arg,
int (*func)(struct inode *inode, struct file *file,

unsigned int cmd, void *arg));

/* helper functions to alloc / release struct video_device, the
later can be used for video_device->release() */

struct video_device *video_device_alloc(void);
void video_device_release(struct video_device *vfd);

#endif

/*
* M I S C E L L A N E O U S

*/

/* Four-character-code (FOURCC) */
#define v4l2_fourcc(a,b,c,d)\

(((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24))

/*
* E N U M S

*/
enum v4l2_field {

V4L2_FIELD_ANY = 0, /* driver can choose from none,
top, bottom, interlaced
depending on whatever it thinks
is approximate ... */

V4L2_FIELD_NONE = 1, /* this device has no fields ... */
V4L2_FIELD_TOP = 2, /* top field only */
V4L2_FIELD_BOTTOM = 3, /* bottom field only */
V4L2_FIELD_INTERLACED = 4, /* both fields interlaced */
V4L2_FIELD_SEQ_TB = 5, /* both fields sequential into one

buffer, top-bottom order */
V4L2_FIELD_SEQ_BT = 6, /* same as above + bottom-top order */
V4L2_FIELD_ALTERNATE = 7, /* both fields alternating into

separate buffers */
};
#define V4L2_FIELD_HAS_TOP(field) \

((field) == V4L2_FIELD_TOP ||\
(field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTTOM(field) \
((field) == V4L2_FIELD_BOTTOM ||\
(field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTH(field) \
((field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

181

Appendix A. Video For Linux Two Header File

enum v4l2_buf_type {
V4L2_BUF_TYPE_VIDEO_CAPTURE = 1,
V4L2_BUF_TYPE_VIDEO_OUTPUT = 2,
V4L2_BUF_TYPE_VIDEO_OVERLAY = 3,
V4L2_BUF_TYPE_VBI_CAPTURE = 4,
V4L2_BUF_TYPE_VBI_OUTPUT = 5,

#if 1 /*KEEP*/
/* Experimental Sliced VBI */
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE = 6,
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT = 7,

#endif
V4L2_BUF_TYPE_PRIVATE = 0x80,

};

enum v4l2_ctrl_type {
V4L2_CTRL_TYPE_INTEGER = 1,
V4L2_CTRL_TYPE_BOOLEAN = 2,
V4L2_CTRL_TYPE_MENU = 3,
V4L2_CTRL_TYPE_BUTTON = 4,

};

enum v4l2_tuner_type {
V4L2_TUNER_RADIO = 1,
V4L2_TUNER_ANALOG_TV = 2,
V4L2_TUNER_DIGITAL_TV = 3,

};

enum v4l2_memory {
V4L2_MEMORY_MMAP = 1,
V4L2_MEMORY_USERPTR = 2,
V4L2_MEMORY_OVERLAY = 3,

};

/* see also http://vektor.theorem.ca/graphics/ycbcr/ */
enum v4l2_colorspace {

/* ITU-R 601 -- broadcast NTSC/PAL */
V4L2_COLORSPACE_SMPTE170M = 1,

/* 1125-Line (US) HDTV */
V4L2_COLORSPACE_SMPTE240M = 2,

/* HD and modern captures. */
V4L2_COLORSPACE_REC709 = 3,

/* broken BT878 extents (601, luma range 16-253 instead of 16-235) */
V4L2_COLORSPACE_BT878 = 4,

/* These should be useful. Assume 601 extents. */
V4L2_COLORSPACE_470_SYSTEM_M = 5,
V4L2_COLORSPACE_470_SYSTEM_BG = 6,

/* I know there will be cameras that send this. So, this is

* unspecified chromaticities and full 0-255 on each of the

* Y’CbCr components

*/
V4L2_COLORSPACE_JPEG = 7,

182

Appendix A. Video For Linux Two Header File

/* For RGB colourspaces, this is probably a good start. */
V4L2_COLORSPACE_SRGB = 8,

};

enum v4l2_priority {
V4L2_PRIORITY_UNSET = 0, /* not initialized */
V4L2_PRIORITY_BACKGROUND = 1,
V4L2_PRIORITY_INTERACTIVE = 2,
V4L2_PRIORITY_RECORD = 3,
V4L2_PRIORITY_DEFAULT = V4L2_PRIORITY_INTERACTIVE,

};

struct v4l2_rect {
__s32 left;
__s32 top;
__s32 width;
__s32 height;

};

struct v4l2_fract {
__u32 numerator;
__u32 denominator;

};

/*
* D R I V E R C A P A B I L I T I E S

*/
struct v4l2_capability
{

__u8 driver[16]; /* i.e. "bttv" */
__u8 card[32]; /* i.e. "Hauppauge WinTV" */
__u8 bus_info[32]; /* "PCI:" + pci_name(pci_dev) */
__u32 version; /* should use KERNEL_VERSION() */
__u32 capabilities; /* Device capabilities */
__u32 reserved[4];

};

/* Values for ’capabilities’ field */
#define V4L2_CAP_VIDEO_CAPTURE 0x00000001 /* Is a video capture device */
#define V4L2_CAP_VIDEO_OUTPUT 0x00000002 /* Is a video output device */
#define V4L2_CAP_VIDEO_OVERLAY 0x00000004 /* Can do video overlay */
#define V4L2_CAP_VBI_CAPTURE 0x00000010 /* Is a raw VBI capture device */
#define V4L2_CAP_VBI_OUTPUT 0x00000020 /* Is a raw VBI output device */
#if 1 /*KEEP*/
#define V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 /* Is a sliced VBI capture device */
#define V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 /* Is a sliced VBI output device */
#endif
#define V4L2_CAP_RDS_CAPTURE 0x00000100 /* RDS data capture */

#define V4L2_CAP_TUNER 0x00010000 /* has a tuner */
#define V4L2_CAP_AUDIO 0x00020000 /* has audio support */
#define V4L2_CAP_RADIO 0x00040000 /* is a radio device */

#define V4L2_CAP_READWRITE 0x01000000 /* read/write systemcalls */
#define V4L2_CAP_ASYNCIO 0x02000000 /* async I/O */
#define V4L2_CAP_STREAMING 0x04000000 /* streaming I/O ioctls */

183

Appendix A. Video For Linux Two Header File

/*
* V I D E O I M A G E F O R M A T

*/

struct v4l2_pix_format
{

__u32 width;
__u32 height;
__u32 pixelformat;
enum v4l2_field field;
__u32 bytesperline; /* for padding, zero if unused */
__u32 sizeimage;
enum v4l2_colorspace colorspace;
__u32 priv; /* private data, depends on pixelformat */

};

/* Pixel format FOURCC depth Description */
#define V4L2_PIX_FMT_RGB332 v4l2_fourcc(’R’,’G’,’B’,’1’) /* 8 RGB-3-3-2 */
#define V4L2_PIX_FMT_RGB555 v4l2_fourcc(’R’,’G’,’B’,’O’) /* 16 RGB-5-5-5 */
#define V4L2_PIX_FMT_RGB565 v4l2_fourcc(’R’,’G’,’B’,’P’) /* 16 RGB-5-6-5 */
#define V4L2_PIX_FMT_RGB555X v4l2_fourcc(’R’,’G’,’B’,’Q’) /* 16 RGB-5-5-5 BE */
#define V4L2_PIX_FMT_RGB565X v4l2_fourcc(’R’,’G’,’B’,’R’) /* 16 RGB-5-6-5 BE */
#define V4L2_PIX_FMT_BGR24 v4l2_fourcc(’B’,’G’,’R’,’3’) /* 24 BGR-8-8-8 */
#define V4L2_PIX_FMT_RGB24 v4l2_fourcc(’R’,’G’,’B’,’3’) /* 24 RGB-8-8-8 */
#define V4L2_PIX_FMT_BGR32 v4l2_fourcc(’B’,’G’,’R’,’4’) /* 32 BGR-8-8-8-8 */
#define V4L2_PIX_FMT_RGB32 v4l2_fourcc(’R’,’G’,’B’,’4’) /* 32 RGB-8-8-8-8 */
#define V4L2_PIX_FMT_GREY v4l2_fourcc(’G’,’R’,’E’,’Y’) /* 8 Greyscale */
#define V4L2_PIX_FMT_YVU410 v4l2_fourcc(’Y’,’V’,’U’,’9’) /* 9 YVU 4:1:0 */
#define V4L2_PIX_FMT_YVU420 v4l2_fourcc(’Y’,’V’,’1’,’2’) /* 12 YVU 4:2:0 */
#define V4L2_PIX_FMT_YUYV v4l2_fourcc(’Y’,’U’,’Y’,’V’) /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_UYVY v4l2_fourcc(’U’,’Y’,’V’,’Y’) /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_YUV422P v4l2_fourcc(’4’,’2’,’2’,’P’) /* 16 YVU422 planar */
#define V4L2_PIX_FMT_YUV411P v4l2_fourcc(’4’,’1’,’1’,’P’) /* 16 YVU411 planar */
#define V4L2_PIX_FMT_Y41P v4l2_fourcc(’Y’,’4’,’1’,’P’) /* 12 YUV 4:1:1 */

/* two planes -- one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12 v4l2_fourcc(’N’,’V’,’1’,’2’) /* 12 Y/CbCr 4:2:0 */
#define V4L2_PIX_FMT_NV21 v4l2_fourcc(’N’,’V’,’2’,’1’) /* 12 Y/CrCb 4:2:0 */

/* The following formats are not defined in the V4L2 specification */
#define V4L2_PIX_FMT_YUV410 v4l2_fourcc(’Y’,’U’,’V’,’9’) /* 9 YUV 4:1:0 */
#define V4L2_PIX_FMT_YUV420 v4l2_fourcc(’Y’,’U’,’1’,’2’) /* 12 YUV 4:2:0 */
#define V4L2_PIX_FMT_YYUV v4l2_fourcc(’Y’,’Y’,’U’,’V’) /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_HI240 v4l2_fourcc(’H’,’I’,’2’,’4’) /* 8 8-bit color */

/* see http://www.siliconimaging.com/RGB%20Bayer.htm */
#define V4L2_PIX_FMT_SBGGR8 v4l2_fourcc(’B’,’A’,’8’,’1’) /* 8 BGBG.. GRGR.. */

/* compressed formats */
#define V4L2_PIX_FMT_MJPEG v4l2_fourcc(’M’,’J’,’P’,’G’) /* Motion-JPEG */
#define V4L2_PIX_FMT_JPEG v4l2_fourcc(’J’,’P’,’E’,’G’) /* JFIF JPEG */
#define V4L2_PIX_FMT_DV v4l2_fourcc(’d’,’v’,’s’,’d’) /* 1394 */
#define V4L2_PIX_FMT_MPEG v4l2_fourcc(’M’,’P’,’E’,’G’) /* MPEG */

/* Vendor-specific formats */
#define V4L2_PIX_FMT_WNVA v4l2_fourcc(’W’,’N’,’V’,’A’) /* Winnov hw compress */
#define V4L2_PIX_FMT_SN9C10X v4l2_fourcc(’S’,’9’,’1’,’0’) /* SN9C10x compression */

184

Appendix A. Video For Linux Two Header File

#define V4L2_PIX_FMT_PWC1 v4l2_fourcc(’P’,’W’,’C’,’1’) /* pwc older webcam */
#define V4L2_PIX_FMT_PWC2 v4l2_fourcc(’P’,’W’,’C’,’2’) /* pwc newer webcam */

/*
* F O R M A T E N U M E R A T I O N

*/
struct v4l2_fmtdesc
{

__u32 index; /* Format number */
enum v4l2_buf_type type; /* buffer type */
__u32 flags;
__u8 description[32]; /* Description string */
__u32 pixelformat; /* Format fourcc */
__u32 reserved[4];

};

#define V4L2_FMT_FLAG_COMPRESSED 0x0001

/*
* T I M E C O D E

*/
struct v4l2_timecode
{

__u32 type;
__u32 flags;
__u8 frames;
__u8 seconds;
__u8 minutes;
__u8 hours;
__u8 userbits[4];

};

/* Type */
#define V4L2_TC_TYPE_24FPS 1
#define V4L2_TC_TYPE_25FPS 2
#define V4L2_TC_TYPE_30FPS 3
#define V4L2_TC_TYPE_50FPS 4
#define V4L2_TC_TYPE_60FPS 5

/* Flags */
#define V4L2_TC_FLAG_DROPFRAME 0x0001 /* "drop-frame" mode */
#define V4L2_TC_FLAG_COLORFRAME 0x0002
#define V4L2_TC_USERBITS_field 0x000C
#define V4L2_TC_USERBITS_USERDEFINED 0x0000
#define V4L2_TC_USERBITS_8BITCHARS 0x0008
/* The above is based on SMPTE timecodes */

#if 1
/*
* M P E G C O M P R E S S I O N P A R A M E T E R S

*
* ### WARNING: this is still work-in-progress right now, most likely

* ### there will be some incompatible changes.

*
*/

185

Appendix A. Video For Linux Two Header File

enum v4l2_bitrate_mode {
V4L2_BITRATE_NONE = 0, /* not specified */
V4L2_BITRATE_CBR, /* constant bitrate */
V4L2_BITRATE_VBR, /* variable bitrate */

};
struct v4l2_bitrate {

/* rates are specified in kbit/sec */
enum v4l2_bitrate_mode mode;
__u32 min;
__u32 target; /* use this one for CBR */
__u32 max;

};

enum v4l2_mpeg_streamtype {
V4L2_MPEG_SS_1, /* MPEG-1 system stream */
V4L2_MPEG_PS_2, /* MPEG-2 program stream */
V4L2_MPEG_TS_2, /* MPEG-2 transport stream */
V4L2_MPEG_PS_DVD, /* MPEG-2 program stream with DVD header fixups */

};
enum v4l2_mpeg_audiotype {

V4L2_MPEG_AU_2_I, /* MPEG-2 layer 1 */
V4L2_MPEG_AU_2_II, /* MPEG-2 layer 2 */
V4L2_MPEG_AU_2_III, /* MPEG-2 layer 3 */
V4L2_MPEG_AC3, /* AC3 */
V4L2_MPEG_LPCM, /* LPCM */

};
enum v4l2_mpeg_videotype {

V4L2_MPEG_VI_1, /* MPEG-1 */
V4L2_MPEG_VI_2, /* MPEG-2 */

};
enum v4l2_mpeg_aspectratio {

V4L2_MPEG_ASPECT_SQUARE = 1, /* square pixel */
V4L2_MPEG_ASPECT_4_3 = 2, /* 4 : 3 */
V4L2_MPEG_ASPECT_16_9 = 3, /* 16 : 9 */
V4L2_MPEG_ASPECT_1_221 = 4, /* 1 : 2,21 */

};

struct v4l2_mpeg_compression {
/* general */
enum v4l2_mpeg_streamtype st_type;
struct v4l2_bitrate st_bitrate;

/* transport streams */
__u16 ts_pid_pmt;
__u16 ts_pid_audio;
__u16 ts_pid_video;
__u16 ts_pid_pcr;

/* program stream */
__u16 ps_size;
__u16 reserved_1; /* align */

/* audio */
enum v4l2_mpeg_audiotype au_type;
struct v4l2_bitrate au_bitrate;

186

Appendix A. Video For Linux Two Header File

__u32 au_sample_rate;
__u8 au_pesid;
__u8 reserved_2[3]; /* align */

/* video */
enum v4l2_mpeg_videotype vi_type;
enum v4l2_mpeg_aspectratio vi_aspect_ratio;
struct v4l2_bitrate vi_bitrate;
__u32 vi_frame_rate;
__u16 vi_frames_per_gop;
__u16 vi_bframes_count;
__u8 vi_pesid;
__u8 reserved_3[3]; /* align */

/* misc flags */
__u32 closed_gops:1;
__u32 pulldown:1;
__u32 reserved_4:30; /* align */

/* I don’t expect the above being perfect yet ;) */
__u32 reserved_5[8];

};
#endif

struct v4l2_jpegcompression
{

int quality;

int APPn; /* Number of APP segment to be written,

* must be 0..15 */
int APP_len; /* Length of data in JPEG APPn segment */
char APP_data[60]; /* Data in the JPEG APPn segment. */

int COM_len; /* Length of data in JPEG COM segment */
char COM_data[60]; /* Data in JPEG COM segment */

__u32 jpeg_markers; /* Which markers should go into the JPEG

* output. Unless you exactly know what

* you do, leave them untouched.

* Inluding less markers will make the

* resulting code smaller, but there will

* be fewer aplications which can read it.

* The presence of the APP and COM marker

* is influenced by APP_len and COM_len

* ONLY, not by this property! */

#define V4L2_JPEG_MARKER_DHT (1<<3) /* Define Huffman Tables */
#define V4L2_JPEG_MARKER_DQT (1<<4) /* Define Quantization Tables */
#define V4L2_JPEG_MARKER_DRI (1<<5) /* Define Restart Interval */
#define V4L2_JPEG_MARKER_COM (1<<6) /* Comment segment */
#define V4L2_JPEG_MARKER_APP (1<<7) /* App segment, driver will

* allways use APP0 */
};

/*
* M E M O R Y - M A P P I N G B U F F E R S

187

Appendix A. Video For Linux Two Header File

*/
struct v4l2_requestbuffers
{

__u32 count;
enum v4l2_buf_type type;
enum v4l2_memory memory;
__u32 reserved[2];

};

struct v4l2_buffer
{

__u32 index;
enum v4l2_buf_type type;
__u32 bytesused;
__u32 flags;
enum v4l2_field field;
struct timeval timestamp;
struct v4l2_timecode timecode;
__u32 sequence;

/* memory location */
enum v4l2_memory memory;
union {

__u32 offset;
unsigned long userptr;

} m;
__u32 length;
__u32 input;
__u32 reserved;

};

/* Flags for ’flags’ field */
#define V4L2_BUF_FLAG_MAPPED 0x0001 /* Buffer is mapped (flag) */
#define V4L2_BUF_FLAG_QUEUED 0x0002 /* Buffer is queued for processing */
#define V4L2_BUF_FLAG_DONE 0x0004 /* Buffer is ready */
#define V4L2_BUF_FLAG_KEYFRAME 0x0008 /* Image is a keyframe (I-frame) */
#define V4L2_BUF_FLAG_PFRAME 0x0010 /* Image is a P-frame */
#define V4L2_BUF_FLAG_BFRAME 0x0020 /* Image is a B-frame */
#define V4L2_BUF_FLAG_TIMECODE 0x0100 /* timecode field is valid */
#define V4L2_BUF_FLAG_INPUT 0x0200 /* input field is valid */

/*
* O V E R L A Y P R E V I E W

*/
struct v4l2_framebuffer
{

__u32 capability;
__u32 flags;

/* FIXME: in theory we should pass something like PCI device + memory

* region + offset instead of some physical address */
void* base;
struct v4l2_pix_format fmt;

};
/* Flags for the ’capability’ field. Read only */
#define V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001
#define V4L2_FBUF_CAP_CHROMAKEY 0x0002
#define V4L2_FBUF_CAP_LIST_CLIPPING 0x0004

188

Appendix A. Video For Linux Two Header File

#define V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008
/* Flags for the ’flags’ field. */
#define V4L2_FBUF_FLAG_PRIMARY 0x0001
#define V4L2_FBUF_FLAG_OVERLAY 0x0002
#define V4L2_FBUF_FLAG_CHROMAKEY 0x0004

struct v4l2_clip
{

struct v4l2_rect c;
struct v4l2_clip *next;

};

struct v4l2_window
{

struct v4l2_rect w;
enum v4l2_field field;
__u32 chromakey;
struct v4l2_clip __user *clips;
__u32 clipcount;
void __user *bitmap;

};

/*
* C A P T U R E P A R A M E T E R S

*/
struct v4l2_captureparm
{

__u32 capability; /* Supported modes */
__u32 capturemode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in .1us units */
__u32 extendedmode; /* Driver-specific extensions */
__u32 readbuffers; /* # of buffers for read */
__u32 reserved[4];

};
/* Flags for ’capability’ and ’capturemode’ fields */
#define V4L2_MODE_HIGHQUALITY 0x0001 /* High quality imaging mode */
#define V4L2_CAP_TIMEPERFRAME 0x1000 /* timeperframe field is supported */

struct v4l2_outputparm
{

__u32 capability; /* Supported modes */
__u32 outputmode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in seconds */
__u32 extendedmode; /* Driver-specific extensions */
__u32 writebuffers; /* # of buffers for write */
__u32 reserved[4];

};

/*
* I N P U T I M A G E C R O P P I N G

*/

struct v4l2_cropcap {
enum v4l2_buf_type type;
struct v4l2_rect bounds;
struct v4l2_rect defrect;

189

Appendix A. Video For Linux Two Header File

struct v4l2_fract pixelaspect;
};

struct v4l2_crop {
enum v4l2_buf_type type;
struct v4l2_rect c;

};

/*
* A N A L O G V I D E O S T A N D A R D

*/

typedef __u64 v4l2_std_id;

/* one bit for each */
#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000)
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000)
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

/* some common needed stuff */
#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_PAL_G)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |\
V4L2_STD_PAL_D1 |\
V4L2_STD_PAL_K)

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |\
V4L2_STD_PAL_DK |\
V4L2_STD_PAL_H |\
V4L2_STD_PAL_I)

190

Appendix A. Video For Linux Two Header File

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |\
V4L2_STD_NTSC_M_JP)

#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |\
V4L2_STD_SECAM_K |\
V4L2_STD_SECAM_K1)

#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |\
V4L2_STD_SECAM_G |\
V4L2_STD_SECAM_H |\
V4L2_STD_SECAM_DK |\
V4L2_STD_SECAM_L)

#define V4L2_STD_525_60 (V4L2_STD_PAL_M |\
V4L2_STD_PAL_60 |\
V4L2_STD_NTSC |\
V4L2_STD_NTSC_443)

#define V4L2_STD_625_50 (V4L2_STD_PAL |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_SECAM)

#define V4L2_STD_ATSC (V4L2_STD_ATSC_8_VSB |\
V4L2_STD_ATSC_16_VSB)

#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |\

V4L2_STD_625_50)

struct v4l2_standard
{

__u32 index;
v4l2_std_id id;
__u8 name[24];
struct v4l2_fract frameperiod; /* Frames, not fields */
__u32 framelines;
__u32 reserved[4];

};

/*
* V I D E O I N P U T S

*/
struct v4l2_input
{

__u32 index; /* Which input */
__u8 name[32]; /* Label */
__u32 type; /* Type of input */
__u32 audioset; /* Associated audios (bitfield) */
__u32 tuner; /* Associated tuner */
v4l2_std_id std;
__u32 status;
__u32 reserved[4];

};
/* Values for the ’type’ field */
#define V4L2_INPUT_TYPE_TUNER 1
#define V4L2_INPUT_TYPE_CAMERA 2

/* field ’status’ - general */
#define V4L2_IN_ST_NO_POWER 0x00000001 /* Attached device is off */

191

Appendix A. Video For Linux Two Header File

#define V4L2_IN_ST_NO_SIGNAL 0x00000002
#define V4L2_IN_ST_NO_COLOR 0x00000004

/* field ’status’ - analog */
#define V4L2_IN_ST_NO_H_LOCK 0x00000100 /* No horizontal sync lock */
#define V4L2_IN_ST_COLOR_KILL 0x00000200 /* Color killer is active */

/* field ’status’ - digital */
#define V4L2_IN_ST_NO_SYNC 0x00010000 /* No synchronization lock */
#define V4L2_IN_ST_NO_EQU 0x00020000 /* No equalizer lock */
#define V4L2_IN_ST_NO_CARRIER 0x00040000 /* Carrier recovery failed */

/* field ’status’ - VCR and set-top box */
#define V4L2_IN_ST_MACROVISION 0x01000000 /* Macrovision detected */
#define V4L2_IN_ST_NO_ACCESS 0x02000000 /* Conditional access denied */
#define V4L2_IN_ST_VTR 0x04000000 /* VTR time constant */

/*
* V I D E O O U T P U T S

*/
struct v4l2_output
{

__u32 index; /* Which output */
__u8 name[32]; /* Label */
__u32 type; /* Type of output */
__u32 audioset; /* Associated audios (bitfield) */
__u32 modulator; /* Associated modulator */
v4l2_std_id std;
__u32 reserved[4];

};
/* Values for the ’type’ field */
#define V4L2_OUTPUT_TYPE_MODULATOR 1
#define V4L2_OUTPUT_TYPE_ANALOG 2
#define V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY 3

/*
* C O N T R O L S

*/
struct v4l2_control
{

__u32 id;
__s32 value;

};

/* Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
struct v4l2_queryctrl
{

__u32 id;
enum v4l2_ctrl_type type;
__u8 name[32]; /* Whatever */
__s32 minimum; /* Note signedness */
__s32 maximum;
__s32 step;
__s32 default_value;
__u32 flags;
__u32 reserved[2];

};

192

Appendix A. Video For Linux Two Header File

/* Used in the VIDIOC_QUERYMENU ioctl for querying menu items */
struct v4l2_querymenu
{

__u32 id;
__u32 index;
__u8 name[32]; /* Whatever */
__u32 reserved;

};

/* Control flags */
#define V4L2_CTRL_FLAG_DISABLED 0x0001
#define V4L2_CTRL_FLAG_GRABBED 0x0002

/* Control IDs defined by V4L2 */
#define V4L2_CID_BASE 0x00980900
/* IDs reserved for driver specific controls */
#define V4L2_CID_PRIVATE_BASE 0x08000000

#define V4L2_CID_BRIGHTNESS (V4L2_CID_BASE+0)
#define V4L2_CID_CONTRAST (V4L2_CID_BASE+1)
#define V4L2_CID_SATURATION (V4L2_CID_BASE+2)
#define V4L2_CID_HUE (V4L2_CID_BASE+3)
#define V4L2_CID_AUDIO_VOLUME (V4L2_CID_BASE+5)
#define V4L2_CID_AUDIO_BALANCE (V4L2_CID_BASE+6)
#define V4L2_CID_AUDIO_BASS (V4L2_CID_BASE+7)
#define V4L2_CID_AUDIO_TREBLE (V4L2_CID_BASE+8)
#define V4L2_CID_AUDIO_MUTE (V4L2_CID_BASE+9)
#define V4L2_CID_AUDIO_LOUDNESS (V4L2_CID_BASE+10)
#define V4L2_CID_BLACK_LEVEL (V4L2_CID_BASE+11)
#define V4L2_CID_AUTO_WHITE_BALANCE (V4L2_CID_BASE+12)
#define V4L2_CID_DO_WHITE_BALANCE (V4L2_CID_BASE+13)
#define V4L2_CID_RED_BALANCE (V4L2_CID_BASE+14)
#define V4L2_CID_BLUE_BALANCE (V4L2_CID_BASE+15)
#define V4L2_CID_GAMMA (V4L2_CID_BASE+16)
#define V4L2_CID_WHITENESS (V4L2_CID_GAMMA) /* ? Not sure */
#define V4L2_CID_EXPOSURE (V4L2_CID_BASE+17)
#define V4L2_CID_AUTOGAIN (V4L2_CID_BASE+18)
#define V4L2_CID_GAIN (V4L2_CID_BASE+19)
#define V4L2_CID_HFLIP (V4L2_CID_BASE+20)
#define V4L2_CID_VFLIP (V4L2_CID_BASE+21)
#define V4L2_CID_HCENTER (V4L2_CID_BASE+22)
#define V4L2_CID_VCENTER (V4L2_CID_BASE+23)
#define V4L2_CID_LASTP1 (V4L2_CID_BASE+24) /* last CID + 1 */

/*
* T U N I N G

*/
struct v4l2_tuner
{

__u32 index;
__u8 name[32];
enum v4l2_tuner_type type;
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 rxsubchans;

193

Appendix A. Video For Linux Two Header File

__u32 audmode;
__s32 signal;
__s32 afc;
__u32 reserved[4];

};

struct v4l2_modulator
{

__u32 index;
__u8 name[32];
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 txsubchans;
__u32 reserved[4];

};

/* Flags for the ’capability’ field */
#define V4L2_TUNER_CAP_LOW 0x0001
#define V4L2_TUNER_CAP_NORM 0x0002
#define V4L2_TUNER_CAP_STEREO 0x0010
#define V4L2_TUNER_CAP_LANG2 0x0020
#define V4L2_TUNER_CAP_SAP 0x0020
#define V4L2_TUNER_CAP_LANG1 0x0040

/* Flags for the ’rxsubchans’ field */
#define V4L2_TUNER_SUB_MONO 0x0001
#define V4L2_TUNER_SUB_STEREO 0x0002
#define V4L2_TUNER_SUB_LANG2 0x0004
#define V4L2_TUNER_SUB_SAP 0x0004
#define V4L2_TUNER_SUB_LANG1 0x0008

/* Values for the ’audmode’ field */
#define V4L2_TUNER_MODE_MONO 0x0000
#define V4L2_TUNER_MODE_STEREO 0x0001
#define V4L2_TUNER_MODE_LANG2 0x0002
#define V4L2_TUNER_MODE_SAP 0x0002
#define V4L2_TUNER_MODE_LANG1 0x0003

struct v4l2_frequency
{

__u32 tuner;
enum v4l2_tuner_type type;
__u32 frequency;
__u32 reserved[8];

};

/*
* A U D I O

*/
struct v4l2_audio
{

__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

194

Appendix A. Video For Linux Two Header File

};
/* Flags for the ’capability’ field */
#define V4L2_AUDCAP_STEREO 0x00001
#define V4L2_AUDCAP_AVL 0x00002

/* Flags for the ’mode’ field */
#define V4L2_AUDMODE_AVL 0x00001
#define V4L2_AUDMODE_32BITS 0x00002

struct v4l2_audioout
{

__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

/*
* D A T A S E R V I C E S (V B I)

*
* Data services API by Michael Schimek

*/

/* Raw VBI */

struct v4l2_vbi_format
{

__u32 sampling_rate; /* in 1 Hz */
__u32 offset;
__u32 samples_per_line;
__u32 sample_format; /* V4L2_PIX_FMT_* */
__s32 start[2];
__u32 count[2];
__u32 flags; /* V4L2_VBI_* */
__u32 reserved[2]; /* must be zero */

};

/* VBI flags */
#define V4L2_VBI_UNSYNC (1<< 0)
#define V4L2_VBI_INTERLACED (1<< 1)

#if 1 /*KEEP*/
/* Sliced VBI

*
* This implements is a proposal V4L2 API to allow SLICED VBI

* required for some hardware encoders. It should change without

* notice in the definitive implementation.

*/

struct v4l2_sliced_vbi_format
{

__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first field

service_lines[1][...] specifies lines 0-23 (1-23 used) of the second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

195

Appendix A. Video For Linux Two Header File

__u16 service_lines[2][24];
__u32 io_size;
__u32 reserved[2]; /* must be zero */

};

#define V4L2_SLICED_TELETEXT_B (0x0001)
#define V4L2_SLICED_VPS (0x0400)
#define V4L2_SLICED_CAPTION_525 (0x1000)
#define V4L2_SLICED_WSS_625 (0x4000)

#define V4L2_SLICED_VBI_525 (V4L2_SLICED_CAPTION_525)
#define V4L2_SLICED_VBI_625 (V4L2_SLICED_TELETEXT_B | V4L2_SLICED_VPS | V4L2_SLICED_WSS_625)

struct v4l2_sliced_vbi_cap
{

__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first field

service_lines[1][...] specifies lines 0-23 (1-23 used) of the second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

__u16 service_lines[2][24];
__u32 reserved[4]; /* must be 0 */

};

struct v4l2_sliced_vbi_data
{

__u32 id;
__u32 field; /* 0: first field, 1: second field */
__u32 line; /* 1-23 */
__u32 reserved; /* must be 0 */
__u8 data[48];

};
#endif

/*
* A G G R E G A T E S T R U C T U R E S

*/

/* Stream data format

*/
struct v4l2_format
{

enum v4l2_buf_type type;
union
{

struct v4l2_pix_format pix; // V4L2_BUF_TYPE_VIDEO_CAPTURE
struct v4l2_window win; // V4L2_BUF_TYPE_VIDEO_OVERLAY
struct v4l2_vbi_format vbi; // V4L2_BUF_TYPE_VBI_CAPTURE

#if 1 /*KEEP*/
struct v4l2_sliced_vbi_format sliced; // V4L2_BUF_TYPE_SLICED_VBI_CAPTURE

#endif
__u8 raw_data[200]; // user-defined

} fmt;
};

/* Stream type-dependent parameters

196

Appendix A. Video For Linux Two Header File

*/
struct v4l2_streamparm
{

enum v4l2_buf_type type;
union
{

struct v4l2_captureparm capture;
struct v4l2_outputparm output;
__u8 raw_data[200]; /* user-defined */

} parm;
};

/*
* I O C T L C O D E S F O R V I D E O D E V I C E S

*
*/
#define VIDIOC_QUERYCAP _IOR (’V’, 0, struct v4l2_capability)
#define VIDIOC_RESERVED _IO (’V’, 1)
#define VIDIOC_ENUM_FMT _IOWR (’V’, 2, struct v4l2_fmtdesc)
#define VIDIOC_G_FMT _IOWR (’V’, 4, struct v4l2_format)
#define VIDIOC_S_FMT _IOWR (’V’, 5, struct v4l2_format)
#if 1 /* experimental */
#define VIDIOC_G_MPEGCOMP _IOR (’V’, 6, struct v4l2_mpeg_compression)
#define VIDIOC_S_MPEGCOMP _IOW (’V’, 7, struct v4l2_mpeg_compression)
#endif
#define VIDIOC_REQBUFS _IOWR (’V’, 8, struct v4l2_requestbuffers)
#define VIDIOC_QUERYBUF _IOWR (’V’, 9, struct v4l2_buffer)
#define VIDIOC_G_FBUF _IOR (’V’, 10, struct v4l2_framebuffer)
#define VIDIOC_S_FBUF _IOW (’V’, 11, struct v4l2_framebuffer)
#define VIDIOC_OVERLAY _IOW (’V’, 14, int)
#define VIDIOC_QBUF _IOWR (’V’, 15, struct v4l2_buffer)
#define VIDIOC_DQBUF _IOWR (’V’, 17, struct v4l2_buffer)
#define VIDIOC_STREAMON _IOW (’V’, 18, int)
#define VIDIOC_STREAMOFF _IOW (’V’, 19, int)
#define VIDIOC_G_PARM _IOWR (’V’, 21, struct v4l2_streamparm)
#define VIDIOC_S_PARM _IOWR (’V’, 22, struct v4l2_streamparm)
#define VIDIOC_G_STD _IOR (’V’, 23, v4l2_std_id)
#define VIDIOC_S_STD _IOW (’V’, 24, v4l2_std_id)
#define VIDIOC_ENUMSTD _IOWR (’V’, 25, struct v4l2_standard)
#define VIDIOC_ENUMINPUT _IOWR (’V’, 26, struct v4l2_input)
#define VIDIOC_G_CTRL _IOWR (’V’, 27, struct v4l2_control)
#define VIDIOC_S_CTRL _IOWR (’V’, 28, struct v4l2_control)
#define VIDIOC_G_TUNER _IOWR (’V’, 29, struct v4l2_tuner)
#define VIDIOC_S_TUNER _IOW (’V’, 30, struct v4l2_tuner)
#define VIDIOC_G_AUDIO _IOR (’V’, 33, struct v4l2_audio)
#define VIDIOC_S_AUDIO _IOW (’V’, 34, struct v4l2_audio)
#define VIDIOC_QUERYCTRL _IOWR (’V’, 36, struct v4l2_queryctrl)
#define VIDIOC_QUERYMENU _IOWR (’V’, 37, struct v4l2_querymenu)
#define VIDIOC_G_INPUT _IOR (’V’, 38, int)
#define VIDIOC_S_INPUT _IOWR (’V’, 39, int)
#define VIDIOC_G_OUTPUT _IOR (’V’, 46, int)
#define VIDIOC_S_OUTPUT _IOWR (’V’, 47, int)
#define VIDIOC_ENUMOUTPUT _IOWR (’V’, 48, struct v4l2_output)
#define VIDIOC_G_AUDOUT _IOR (’V’, 49, struct v4l2_audioout)
#define VIDIOC_S_AUDOUT _IOW (’V’, 50, struct v4l2_audioout)

197

Appendix A. Video For Linux Two Header File

#define VIDIOC_G_MODULATOR _IOWR (’V’, 54, struct v4l2_modulator)
#define VIDIOC_S_MODULATOR _IOW (’V’, 55, struct v4l2_modulator)
#define VIDIOC_G_FREQUENCY _IOWR (’V’, 56, struct v4l2_frequency)
#define VIDIOC_S_FREQUENCY _IOW (’V’, 57, struct v4l2_frequency)
#define VIDIOC_CROPCAP _IOWR (’V’, 58, struct v4l2_cropcap)
#define VIDIOC_G_CROP _IOWR (’V’, 59, struct v4l2_crop)
#define VIDIOC_S_CROP _IOW (’V’, 60, struct v4l2_crop)
#define VIDIOC_G_JPEGCOMP _IOR (’V’, 61, struct v4l2_jpegcompression)
#define VIDIOC_S_JPEGCOMP _IOW (’V’, 62, struct v4l2_jpegcompression)
#define VIDIOC_QUERYSTD _IOR (’V’, 63, v4l2_std_id)
#define VIDIOC_TRY_FMT _IOWR (’V’, 64, struct v4l2_format)
#define VIDIOC_ENUMAUDIO _IOWR (’V’, 65, struct v4l2_audio)
#define VIDIOC_ENUMAUDOUT _IOWR (’V’, 66, struct v4l2_audioout)
#define VIDIOC_G_PRIORITY _IOR (’V’, 67, enum v4l2_priority)
#define VIDIOC_S_PRIORITY _IOW (’V’, 68, enum v4l2_priority)
#if 1 /*KEEP*/
#define VIDIOC_G_SLICED_VBI_CAP _IOR (’V’, 69, struct v4l2_sliced_vbi_cap)
#endif
#define VIDIOC_LOG_STATUS _IO (’V’, 70)

/* for compatibility, will go away some day */
#define VIDIOC_OVERLAY_OLD _IOWR (’V’, 14, int)
#define VIDIOC_S_PARM_OLD _IOW (’V’, 22, struct v4l2_streamparm)
#define VIDIOC_S_CTRL_OLD _IOW (’V’, 28, struct v4l2_control)
#define VIDIOC_G_AUDIO_OLD _IOWR (’V’, 33, struct v4l2_audio)
#define VIDIOC_G_AUDOUT_OLD _IOWR (’V’, 49, struct v4l2_audioout)
#define VIDIOC_CROPCAP_OLD _IOR (’V’, 58, struct v4l2_cropcap)

#define BASE_VIDIOC_PRIVATE 192 /* 192-255 are private */

#ifdef __KERNEL__
/*
*
* V 4 L 2 D R I V E R H E L P E R A P I

*
* Some commonly needed functions for drivers (v4l2-common.o module)

*/
#include <linux/fs.h>

/* Video standard functions */
extern unsigned int v4l2_video_std_fps(struct v4l2_standard *vs);
extern int v4l2_video_std_construct(struct v4l2_standard *vs,

int id, char *name);

/* prority handling */
struct v4l2_prio_state {

atomic_t prios[4];
};
int v4l2_prio_init(struct v4l2_prio_state *global);
int v4l2_prio_change(struct v4l2_prio_state *global, enum v4l2_priority *local,

enum v4l2_priority new);
int v4l2_prio_open(struct v4l2_prio_state *global, enum v4l2_priority *local);
int v4l2_prio_close(struct v4l2_prio_state *global, enum v4l2_priority *local);
enum v4l2_priority v4l2_prio_max(struct v4l2_prio_state *global);
int v4l2_prio_check(struct v4l2_prio_state *global, enum v4l2_priority *local);

198

Appendix A. Video For Linux Two Header File

/* names for fancy debug output */
extern char *v4l2_field_names[];
extern char *v4l2_type_names[];
extern char *v4l2_ioctl_names[];

/* Compatibility layer interface -- v4l1-compat module */
typedef int (*v4l2_kioctl)(struct inode *inode, struct file *file,

unsigned int cmd, void *arg);
int v4l_compat_translate_ioctl(struct inode *inode, struct file *file,

int cmd, void *arg, v4l2_kioctl driver_ioctl);

#endif /* __KERNEL__ */
#endif /* __LINUX_VIDEODEV2_H */

/*
* Local variables:

* c-basic-offset: 8

* End:

*/

199

Appendix B. Video Capture Example
/*
* V4L2 video capture example

*
* This program can be used and distributed without restrictions.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <getopt.h> /* getopt_long() */

#include <fcntl.h> /* low-level i/o */
#include <unistd.h>

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/time.h>

#include <sys/mman.h>

#include <sys/ioctl.h>

#include <asm/types.h> /* for videodev2.h */

#include <linux/videodev2.h>

#define CLEAR(x) memset (&(x), 0, sizeof (x))

typedef enum {
IO_METHOD_READ,
IO_METHOD_MMAP,
IO_METHOD_USERPTR,

} io_method;

struct buffer {
void * start;
size_t length;

};

static char * dev_name = NULL;
static io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer * buffers = NULL;
static unsigned int n_buffers = 0;

static void
errno_exit (const char * s)
{

fprintf (stderr, "%s error %d, %s\n",
s, errno, strerror (errno));

200

Appendix B. Video Capture Example

exit (EXIT_FAILURE);
}

static int
xioctl (int fd,

int request,
void * arg)

{
int r;

do r = ioctl (fd, request, arg);
while (-1 == r && EINTR == errno);

return r;
}

static void
process_image (const void * p)
{

fputc (’.’, stdout);
fflush (stdout);

}

static int
read_frame (void)
{

struct v4l2_buffer buf;
unsigned int i;

switch (io) {
case IO_METHOD_READ:

if (-1 == read (fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit ("read");

}
}

process_image (buffers[0].start);

break;

case IO_METHOD_MMAP:
CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl (fd, VIDIOC_DQBUF, &buf)) {

201

Appendix B. Video Capture Example

switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit ("VIDIOC_DQBUF");

}
}

assert (buf.index < n_buffers);

process_image (buffers[buf.index].start);

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))
errno_exit ("VIDIOC_QBUF");

break;

case IO_METHOD_USERPTR:
CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl (fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit ("VIDIOC_DQBUF");

}
}

for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long) buffers[i].start

&& buf.length == buffers[i].length)
break;

assert (i < n_buffers);

process_image ((void *) buf.m.userptr);

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))
errno_exit ("VIDIOC_QBUF");

break;

202

Appendix B. Video Capture Example

}

return 1;
}

static void
mainloop (void)
{

unsigned int count;

count = 100;

while (count-- > 0) {
for (;;) {

fd_set fds;
struct timeval tv;
int r;

FD_ZERO (&fds);
FD_SET (fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select (fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {
if (EINTR == errno)

continue;

errno_exit ("select");
}

if (0 == r) {
fprintf (stderr, "select timeout\n");
exit (EXIT_FAILURE);

}

if (read_frame ())
break;

/* EAGAIN - continue select loop. */
}

}
}

static void
stop_capturing (void)
{

enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

203

Appendix B. Video Capture Example

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl (fd, VIDIOC_STREAMOFF, &type))
errno_exit ("VIDIOC_STREAMOFF");

break;
}

}

static void
start_capturing (void)
{

unsigned int i;
enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))
errno_exit ("VIDIOC_QBUF");

}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl (fd, VIDIOC_STREAMON, &type))
errno_exit ("VIDIOC_STREAMON");

break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.m.userptr = (unsigned long) buffers[i].start;
buf.length = buffers[i].length;

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))
errno_exit ("VIDIOC_QBUF");

}

204

Appendix B. Video Capture Example

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl (fd, VIDIOC_STREAMON, &type))
errno_exit ("VIDIOC_STREAMON");

break;
}

}

static void
uninit_device (void)
{

unsigned int i;

switch (io) {
case IO_METHOD_READ:

free (buffers[0].start);
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)

if (-1 == munmap (buffers[i].start, buffers[i].length))
errno_exit ("munmap");

break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)

free (buffers[i].start);
break;

}

free (buffers);
}

static void
init_read (unsigned int buffer_size)
{

buffers = calloc (1, sizeof (*buffers));

if (!buffers) {
fprintf (stderr, "Out of memory\n");
exit (EXIT_FAILURE);

}

buffers[0].length = buffer_size;
buffers[0].start = malloc (buffer_size);

if (!buffers[0].start) {
fprintf (stderr, "Out of memory\n");
exit (EXIT_FAILURE);

}
}

static void
init_mmap (void)

205

Appendix B. Video Capture Example

{
struct v4l2_requestbuffers req;

CLEAR (req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl (fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf (stderr, "%s does not support "
"memory mapping\n", dev_name);

exit (EXIT_FAILURE);
} else {

errno_exit ("VIDIOC_REQBUFS");
}

}

if (req.count < 2) {
fprintf (stderr, "Insufficient buffer memory on %s\n",

dev_name);
exit (EXIT_FAILURE);

}

buffers = calloc (req.count, sizeof (*buffers));

if (!buffers) {
fprintf (stderr, "Out of memory\n");
exit (EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

if (-1 == xioctl (fd, VIDIOC_QUERYBUF, &buf))
errno_exit ("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start =

mmap (NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)
errno_exit ("mmap");

}
}

206

Appendix B. Video Capture Example

static void
init_userp (unsigned int buffer_size)
{

struct v4l2_requestbuffers req;

CLEAR (req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl (fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf (stderr, "%s does not support "
"user pointer i/o\n", dev_name);

exit (EXIT_FAILURE);
} else {

errno_exit ("VIDIOC_REQBUFS");
}

}

buffers = calloc (4, sizeof (*buffers));

if (!buffers) {
fprintf (stderr, "Out of memory\n");
exit (EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = malloc (buffer_size);

if (!buffers[n_buffers].start) {
fprintf (stderr, "Out of memory\n");
exit (EXIT_FAILURE);

}
}

}

static void
init_device (void)
{

struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;

if (-1 == xioctl (fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {

fprintf (stderr, "%s is no V4L2 device\n",
dev_name);

exit (EXIT_FAILURE);
} else {

errno_exit ("VIDIOC_QUERYCAP");
}

}

207

Appendix B. Video Capture Example

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf (stderr, "%s is no video capture device\n",

dev_name);
exit (EXIT_FAILURE);

}

switch (io) {
case IO_METHOD_READ:

if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
fprintf (stderr, "%s does not support read i/o\n",

dev_name);
exit (EXIT_FAILURE);

}

break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf (stderr, "%s does not support streaming i/o\n",

dev_name);
exit (EXIT_FAILURE);

}

break;
}

/* Select video input, video standard and tune here. */

CLEAR (cropcap);

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (0 == xioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */

if (-1 == xioctl (fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:

/* Cropping not supported. */
break;

default:
/* Errors ignored. */
break;

}
}

} else {
/* Errors ignored. */

}

CLEAR (fmt);

208

Appendix B. Video Capture Example

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

if (-1 == xioctl (fd, VIDIOC_S_FMT, &fmt))
errno_exit ("VIDIOC_S_FMT");

/* Note VIDIOC_S_FMT may change width and height. */

/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)

fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)

fmt.fmt.pix.sizeimage = min;

switch (io) {
case IO_METHOD_READ:

init_read (fmt.fmt.pix.sizeimage);
break;

case IO_METHOD_MMAP:
init_mmap ();
break;

case IO_METHOD_USERPTR:
init_userp (fmt.fmt.pix.sizeimage);
break;

}
}

static void
close_device (void)
{

if (-1 == close (fd))
errno_exit ("close");

fd = -1;
}

static void
open_device (void)
{

struct stat st;

if (-1 == stat (dev_name, &st)) {
fprintf (stderr, "Cannot identify ’%s’: %d, %s\n",

dev_name, errno, strerror (errno));
exit (EXIT_FAILURE);

}

if (!S_ISCHR (st.st_mode)) {
fprintf (stderr, "%s is no device\n", dev_name);
exit (EXIT_FAILURE);

209

Appendix B. Video Capture Example

}

fd = open (dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);

if (-1 == fd) {
fprintf (stderr, "Cannot open ’%s’: %d, %s\n",

dev_name, errno, strerror (errno));
exit (EXIT_FAILURE);

}
}

static void
usage (FILE * fp,

int argc,
char ** argv)

{
fprintf (fp,

"Usage: %s [options]\n\n"
"Options:\n"
"-d | --device name Video device name [/dev/video]\n"
"-h | --help Print this message\n"
"-m | --mmap Use memory mapped buffers\n"
"-r | --read Use read() calls\n"
"-u | --userp Use application allocated buffers\n"
"",
argv[0]);

}

static const char short_options [] = "d:hmru";

static const struct option
long_options [] = {

{ "device", required_argument, NULL, ’d’ },
{ "help", no_argument, NULL, ’h’ },
{ "mmap", no_argument, NULL, ’m’ },
{ "read", no_argument, NULL, ’r’ },
{ "userp", no_argument, NULL, ’u’ },
{ 0, 0, 0, 0 }

};

int
main (int argc,

char ** argv)
{

dev_name = "/dev/video";

for (;;) {
int index;
int c;

c = getopt_long (argc, argv,
short_options, long_options,
&index);

if (-1 == c)
break;

210

Appendix B. Video Capture Example

switch (c) {
case 0: /* getopt_long() flag */

break;

case ’d’:
dev_name = optarg;
break;

case ’h’:
usage (stdout, argc, argv);
exit (EXIT_SUCCESS);

case ’m’:
io = IO_METHOD_MMAP;
break;

case ’r’:
io = IO_METHOD_READ;
break;

case ’u’:
io = IO_METHOD_USERPTR;
break;

default:
usage (stderr, argc, argv);
exit (EXIT_FAILURE);

}
}

open_device ();

init_device ();

start_capturing ();

mainloop ();

stop_capturing ();

uninit_device ();

close_device ();

exit (EXIT_SUCCESS);

return 0;
}

211

Appendix C. GNU Free Documentation
License

C.1. 0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

C.2. 1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input

212

Appendix C. GNU Free Documentation License

to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

C.3. 2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

C.4. 3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated

213

Appendix C. GNU Free Documentation License

location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

C.5. 4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

• C. State on the Title Page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

• K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

214

Appendix C. GNU Free Documentation License

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version .

C.6. 5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

C.7. 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single

215

Appendix C. GNU Free Documentation License

copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and dispbibute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

C.8. 7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document , on account of their being thus compiled, if
they are not themselves derivative works of the Document. If the Cover Text requirement of section
3 is applicable to these copies of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

C.9. 8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

C.10. 9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

C.11. 10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation (http://www.gnu.org/fsf/fsf.html) may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/ (http://www.gnu.org/copyleft).

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has

216

Appendix C. GNU Free Documentation License

been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

C.12. Addendum
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones
are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License (http://www.gnu.org/copyleft/gpl.html), to permit their use in free software.

217

Bibliography

[EIA608] Electronic Industries Alliance (http://www.eia.org), EIA 608 "Recommended Practice for
Line 21 Data Service".

[ITU470] International Telecommunication Union (http://www.itu.ch), ITU-R Recommendation
BT.470-6 "Conventional Television Systems".

[ITU601] International Telecommunication Union (http://www.itu.ch), ITU-R Recommendation
BT.601-5 "Studio Encoding Parameters of Digital Television for Standard 4:3 and
Wide-Screen 16:9 Aspect Ratios".

[ITU709] International Telecommunication Union (http://www.itu.ch), ITU-R Recommendation
BT.709-5 "Parameter values for the HDTV standards for production and international
programme exchange".

[JFIF] Independent JPEG Group (http://www.ijg.org), JPEG File Interchange Format: Version 1.02.

[SMPTE12M] Society of Motion Picture and Television Engineers (http://www.smpte.org), SMPTE
12M-1999 "Television, Audio and Film - Time and Control Code".

[SMPTE170M] Society of Motion Picture and Television Engineers (http://www.smpte.org), SMPTE
170M-1999 "Television - Composite Analog Video Signal - NTSC for Studio Applications".

[SMPTE240M] Society of Motion Picture and Television Engineers (http://www.smpte.org),
SMPTE 240M-1999 "Television - Signal Parameters - 1125-Line High-Definition Production".

[TELETEXT] European Telecommunication Standards Institute (http://www.etsi.org), ETS 300 706
"Enhanced Teletext specification".

[V4L] Alan Cox, Video4Linux API Specification.

This file is part of the Linux kernel sources under Documentation/video4linux.

[V4LPROG] Alan Cox, Video4Linux Programming (a.k.a. The Video4Linux Book), 2000.

About V4L driver programming. This book is part of the Linux kernel DocBook
documentation, for example at http://kernelnewbies.org/documents/. SGML sources are
included in the kernel sources.

[VPS] European Telecommunication Standards Institute (http://www.etsi.org), ETS 300 231
"Specification of the domestic video Programme Delivery Control system (PDC)".

[WSS] International Telecommunication Union (http://www.itu.ch), European Telecommunication
Standards Institute (http://www.etsi.org), ITU-R Recommendation BT.1119, EN 300 294
"625-line television Wide Screen Signalling (WSS)".

218

